433 research outputs found

    Almost-stationary motions and gauge conditions in General Relativity

    Full text link
    An almost-stationary gauge condition is proposed with a view to Numerical Relativity applications. The time lines are defined as the integral curves of the timelike solutions of the harmonic almost-Killing equation. This vector equation is derived by a variational principle, by minimizing the deviations from isometry. The corresponding almost-stationary gauge condition allows one to put the field equations in hyperbolic form, both in the free-evolution ADM and in the Z4 formalisms.Comment: Talk presented at the Spanish Relativity Meeting, September 6-10 2005 Revised versio

    Are gauge shocks really shocks?

    Full text link
    The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.Comment: 7 pages, 5 figures, REVTEX 4. Revised version, including corrections suggested by referee

    Galactic dark matter halo made of spin-zero bosons

    No full text

    Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    Full text link
    In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.Comment: 12 page

    Robustness of the Blandford-Znajek mechanism

    Full text link
    The Blandford-Znajek mechanism has long been regarded as a key ingredient in models attempting to explain powerful jets in AGNs, quasars, blazzars etc. In such mechanism, energy is extracted from a rotating black hole and dissipated at a load at far distances. In the current work we examine the behaviour of the BZ mechanism with respect to different boundary conditions, revealing the mechanism robustness upon variation of these conditions. Consequently, this work closes a gap in our understanding of this important scenario.Comment: 7 pages, accepted in CQ

    Evolutions of Magnetized and Rotating Neutron Stars

    Full text link
    We study the evolution of magnetized and rigidly rotating neutron stars within a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions. The stars are modeled as rotating, magnetized polytropic stars and we examine diverse scenarios to study their dynamics and stability properties. In particular we concentrate on the stability of the stars and possible critical behavior. In addition to their intrinsic physical significance, we use these evolutions as further tests of our implementation which incorporates new developments to handle magnetized systems.Comment: 12 pages, 8 figure

    Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

    Full text link
    We study the implications of adopting hyperbolic driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow-type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.Comment: 9 figure

    Coherence Resonance in Chaotic Systems

    Get PDF
    We show that it is possible for chaotic systems to display the main features of coherence resonance. In particular, we show that a Chua model, operating in a chaotic regime and in the presence of noise, can exhibit oscillations whose regularity is optimal for some intermediate value of the noise intensity. We find that the power spectrum of the signal develops a peak at finite frequency at intermediate values of the noise. These are all signatures of coherence resonance. We also experimentally study a Chua circuit and corroborate the above simulation results. Finally, we analyze a simple model composed of two separate limit cycles which still exhibits coherence resonance, and show that its behavior is qualitatively similar to that of the chaotic Chua systemComment: 4 pages (including 4 figures) LaTeX fil
    • …
    corecore