7,668 research outputs found

    The reason why doping causes superconductivity in LaFeAsO

    Full text link
    The experimental observation of superconductivity in LaFeAsO appearing on doping is analyzed with the group-theoretical approach that evidently led in a foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause of both the antiferromagnetic state and the accompanying structural distortion in this material. Doping, like the structural distortions, means also a reduction of the symmetry of the pure perfect crystal. In the present paper we show that this reduction modifies the correlated motion of the electrons in a special narrow half-filled band of LaFeAsO in such a way that these electrons produce a stable superconducting state

    Density profiles of a colloidal liquid at a wall under shear flow

    Get PDF
    Using a dynamical density functional theory we analyze the density profile of a colloidal liquid near a wall under shear flow. Due to the symmetries of the system considered, the naive application of dynamical density functional theory does not lead to a shear induced modification of the equilibrium density profile, which would be expected on physical grounds. By introducing a physically motivated dynamic mean field correction we incorporate the missing shear induced interparticle forces into the theory. We find that the shear flow tends to enhance the oscillations in the density profile of hard-spheres at a hard-wall and, at sufficiently high shear rates, induces a nonequilibrium transition to a steady state characterized by planes of particles parallel to the wall. Under gravity, we find that the center-of-mass of the density distribution increases with shear rate, i.e., shear increases the potential energy of the particles

    The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach

    Full text link
    As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]

    Triplon mean-field analysis of an antiferromagnet with degenerate Shastry-Sutherland ground states

    Full text link
    We look into the quantum phase diagram of a spin-12\frac{1}{2} antiferromagnet on the square lattice with degenerate Shastry-Sutherland ground states, for which only a schematic phase diagram is known so far. Many exotic phases were proposed in the schematic phase diagram by the use of exact diagonalization on very small system sizes. In our present work, an important extension of this antiferromagnet is introduced and investigated in the thermodynamic limit using triplon mean-field theory. Remarkably, this antiferromagnet shows a stable plaquette spin-gapped phase like the original Shastry-Sutherland antiferromagnet, although both of these antiferromagnets differ in the Hamiltonian construction and ground state degeneracy. We propose a sublattice columnar dimer phase which is stabilized by the second and third neighbor antiferromagnetic Heisenberg exchange interactions. There are also some commensurate and incommensurate magnetically ordered phases, and other spin-gapped phases which find their places in the quantum phase diagram. Mean-field results suggest that there is always a level-crossing phase transition between two spin gapped phases, whereas in other situations, either a level-crossing or a continuous phase transition happens

    On the low-field Hall coefficient of graphite

    Full text link
    We have measured the temperature and magnetic field dependence of the Hall coefficient (RHR_{\rm H}) in three, several micrometer long multigraphene samples of thickness between 9 \sim 9~to 30\sim 30~nm in the temperature range 0.1 to 200~K and up to 0.2~T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RHR_{\rm H} is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.Comment: 10 pages with 7 figures, to be published in AIP Advances (2014

    Biophysics in Africa: challenges, priorities, and hopes

    Full text link
    This report is a serious call to scientists, innovators, investors, and policymakers to invest in the development of biophysics in Africa. The complex problems of our day demand multidisciplinary approaches, and biophysics offers training in much-needed multi- and cross-disciplinary thinking. Biophysics is a research field at the forefront of modern science because it provides a powerful scientific platform that addresses many of the critical challenges humanity faces today and in the future. It is a vital source of innovation for any country interested in developing a high-tech economy. However, there is woefully little biophysics educational and research activity in Africa, representing a critical gap that must be addressed with urgency. This report suggests key research areas that African biophysicists should focus on, identifies major challenges to growing biophysics in Africa, and underscores the high-priority needs that must be addressed.Comment: Final Report for the African Strategy for Fundamental and Applied Physics (ASFAP

    An optical lattice on an atom chip

    Full text link
    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retro-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure
    corecore