298 research outputs found

    Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer

    Get PDF
    The reversible Y–O•/Y–OH redox properties of the α[subscript 3]Y model protein allow access to the electrochemical and thermodynamic properties of 3,5-difluorotyrosine. The unnatural amino acid has been incorporated at position 32, the dedicated radical site in α[subscript 3]Y, by in vivo nonsense codon suppression. Incorporation of 3,5-difluorotyrosine gives rise to very minor structural changes in the protein scaffold at pH values below the apparent pK (8.0 ± 0.1) of the unnatural residue. Square-wave voltammetry on α[subscript 3](3,5)F[subscript 2]Y provides an E°′(Y–O•/Y–OH) of 1026 ± 4 mV versus the normal hydrogen electrode (pH 5.70 ± 0.02) and shows that the fluoro substitutions lower the E°′ by −30 ± 3 mV. These results illustrate the utility of combining the optimized α[subscript 3]Y tyrosine radical system with in vivo nonsense codon suppression to obtain the formal reduction potential of an unnatural aromatic residue residing within a well-structured protein. It is further observed that the protein E°′ values differ significantly from peak potentials derived from irreversible voltammograms of the corresponding aqueous species. This is notable because solution potentials have been the main thermodynamic data available for amino acid radicals. The findings in this paper are discussed relative to recent mechanistic studies of the multistep radical-transfer process in Escherichia coli ribonucleotide reductase site-specifically labeled with unnatural tyrosine residues.National Institutes of Health (U.S.) (Grant GM29595

    Broadband Coupling into a Single-Mode, Electroactive Integrated Optical Waveguide for Spectroelectrochemical Analysis of Surface-Confined Redox Couples

    Get PDF
    Pushing the sensitivity of spectroelectrochemical techniques to routinely monitor changes in spectral properties of thin molecular films (i.e., monolayer or submonolayer) adsorbed on an electrode surface has been a goal of many investigators since the earliest developments in this field. 1 It was initially recognized that exploiting the evanescent field generated by total internal reflection at the interface of an optically transparent electrode (such as a thin film of tin oxide or indium tin oxide (ITO) on glass or quartz) has the inherent advantage of selectively probing only the near-surface region, as opposed to bulk sampling with transmission based techniques. Furthermore, by utilizing the multiple reflections in an attenuated total reflectance (ATR) geometry, an enhancement in sensitivity can be realized, and as the thickness of the ATR element is decreased, the number of reflections increases, yielding a substantial sensitivity enhancement. [2][3][4][5][6] Itoh and Fujishima were the first to show the advantages of reducing the thickness of an ATR element overcoated with a transparent conductive oxide to the integrated optical waveguide (IOW) regime. Using a four-mode, gradient index waveguide coated with a transparent, conductive tin oxide layer, they demonstrated large sensitivity enhancements, relative to a single pass transmission experiment, for spectroelectrochemical measurements of methylene blue. 7,8 Other research groups subsequently described similar gradient index, multilayer, electroactive waveguide structures, but they did not make use of the technology to explore the spectroelectrochemistry of (sub)monolayer coverage films. [9][10][11][12][13] We recently described a single-mode, electroactive planar IOW (the EA-IOW) having a step refractive index profile. It was fabricated by sputtering a Corning 7059 glass layer (400 nm) over soda lime glass or quartz, followed by a 200-nm layer of SiO 2

    Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga \u3ci\u3eNannochloropsis oceanica\u3c/i\u3e CCMP1779

    Get PDF
    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogendepleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    The Cytosolic Domain of Fis1 Binds and Reversibly Clusters Lipid Vesicles

    Get PDF
    Every lipid membrane fission event involves the association of two apposing bilayers, mediated by proteins that can promote membrane curvature, fusion and fission. We tested the hypothesis that Fis1, a tail-anchored protein involved in mitochondrial and peroxisomal fission, promotes changes in membrane structure. We found that the cytosolic domain of Fis1 alone binds lipid vesicles, which is enhanced upon protonation and increasing concentrations of anionic phospholipids. Fluorescence and circular dichroism data indicate that the cytosolic domain undergoes a membrane-induced conformational change that buries two tryptophan side chains upon membrane binding. Light scattering and electron microscopy data show that membrane binding promotes lipid vesicle clustering. Remarkably, this vesicle clustering is reversible and vesicles largely retain their original shape and size. This raises the possibility that the Fis1 cytosolic domain might act in membrane fission by promoting a reversible membrane association, a necessary step in membrane fission
    corecore