315 research outputs found

    Computer simulation of protein systems

    Get PDF
    Ligand binding to dihydrofolate reductase (DHFR) is discussed. This is an extremely important enzyme, as it is the target of several drugs (inhibitors) which are used clinically as antibacterials, antiprotozoals and in cancer chemotherapy. DHFR catalyzes the NADPH (reduced nicotinamide adenine dinucleotide phosphate) dependent reduction of dihydrofolate to tetrahydrofolate, which is used in several pathways of purine and pyrimidine iosynthesis, including that of thymidylate. Since DNA synthesis is dependent on a continuing supply of thymidylate, a blockade of DHFR resulting in a depletion of thymidylate can lead to the cessation of growth of a rapidly proliferating cell line. DHFR exhibits a significant species to species variability in its sensitivity to various inhibitors. For example, trimethoprim, an inhibitor of DHFR, binds to bacterial DHFR's 5 orders of magnitude greater than to vertebrate DHFR's. The structural mechanics, dynamics and energetics of a family of dihydrofolate reductases are studied to rationalize the basis for the inhibitor of these enyzmes and to understand the molecular basis of the difference in the binding constants between the species. This involves investigating the conformational changes induced in the protein on binding the ligand, the internal strain imposed by the enzyme on the ligand, the restriction of fluctuations in atom positions due to binding and the consequent change in entropy

    A robust nanoscale experimental quantification of fracture energy in a bilayer material system

    Get PDF
    Accurate measurement of interfacial properties is critical any time two materials are bonded—in composites, tooth crowns, or when biomaterials are attached to the human body. Yet, in spite of this importance, reliable methods to measure interfacial properties between dissimilar materials remain elusive. Here we present an experimental approach to quantify the interfacial fracture energy Γ[subscript i] that also provides unique mechanistic insight into the interfacial debonding mechanism at the nanoscale. This approach involves deposition of an additional chromium layer (superlayer) onto a bonded system, where interface debonding is initiated by the residual tensile stress in the superlayer, and where the interface can be separated in a controlled manner and captured in situ. Contrary to earlier methods, our approach allows the entire bonded system to remain in an elastic range during the debonding process, such that Γ[subscript i] can be measured accurately. We validate the method by showing that moisture has a degrading effect on the bonding between epoxy and silica, a technologically important interface. Combining in situ through scanning electron microscope images with molecular simulation, we find that the interfacial debonding mechanism is hierarchical in nature, which is initiated by the detachment of polymer chains, and that the three-dimensional covalent network of the epoxy-based polymer may directly influence water accumulation, leading to the reduction of Γ[subscript i] under presence of moisture. The results may enable us to design more durable concrete composites that could be used to innovate transportation systems, create more durable buildings and bridges, and build resilient infrastructure.National Science Foundation (U.S.) (Grant CMS-0856325

    Use of quercetin in animal feed : effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken

    Get PDF
    Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.Peer reviewedFinal Published versio

    Improving education in primary care: development of an online curriculum using the blended learning model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standardizing the experiences of medical students in a community preceptorship where clinical sites vary by geography and discipline can be challenging. Computer-assisted learning is prevalent in medical education and can help standardize experiences, but often is not used to its fullest advantage. A blended learning curriculum combining web-based modules with face-to-face learning can ensure students obtain core curricular principles.</p> <p>Methods</p> <p>This course was developed and used at The Case Western Reserve University School of Medicine and its associated preceptorship sites in the greater Cleveland area. Leaders of a two-year elective continuity experience at the Case Western Reserve School of Medicine used adult learning principles to develop four interactive online modules presenting basics of office practice, difficult patient interviews, common primary care diagnoses, and disease prevention. They can be viewed at <url>http://casemed.case.edu/cpcp/curriculum</url>. Students completed surveys rating the content and technical performance of each module and completed a Generalist OSCE exam at the end of the course.</p> <p>Results</p> <p>Participating students rated all aspects of the course highly; particularly those related to charting and direct patient care. Additionally, they scored very well on the Generalist OSCE exam.</p> <p>Conclusion</p> <p>Students found the web-based modules to be valuable and to enhance their clinical learning. The blended learning model is a useful tool in designing web-based curriculum for enhancing the clinical curriculum of medical students.</p

    NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions

    Get PDF
    bS Supporting Information The enzyme dihydrofolate reductase (DHFR; 5,6,7,8-tetra-hydrofolate:NADPH oxidoreductase, EC 1.5.1.3) catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydro-folate (THF) using NADPH as coenzyme.1 Since THF and its metabolites are precursors of purine and pyrimidine bases, the normal functioning of this enzyme is essential for proliferating cells. This makes DHFR an excellent target for antifolate drugs such as methotrexate (anticancer), pyrimethamine (antimalarial), and trimethoprim (antibacterial). Such agents act by inhibiting the enzyme in parasitic or malignant cells.1,2 The cooperative binding of ligands to DHFR plays an important role not only in the enzyme catalytic cycle (negative cooperativity in THF/ NADPH binding)3 but also in enzyme inhibition (positive cooperativity in antifolate/NADPH binding).4 The effects of positive cooperative binding in controlling enzyme inhibition ar

    Surgery versus Watchful Waiting in Patients with Craniofacial Fibrous Dysplasia – a Meta-Analysis

    Get PDF
    Fibrous dysplasia (FD) is a benign bone tumor which most commonly involves the craniofacial skeleton. The most devastating consequence of craniofacial FD (CFD) is loss of vision due to optic nerve compression (ONC). Radiological evidence of ONC is common, however the management of this condition is not well established. Our objective was to compare the long-term outcome of patients with optic nerve compression (ONC) due to craniofacial fibrous dysplasia (CFD) who either underwent surgery or were managed expectantly.We performed a meta-analysis of 27 studies along with analysis of the records of a cohort of patients enrolled in National Institutes of Health (NIH) protocol 98-D-0145, entitled Screening and Natural History of Fibrous Dysplasia, with a diagnosis of CFD. The study group consisted of 241 patients; 122 were enrolled in the NIH study and 119 were extracted from cases published in the literature. The median follow-up period was 54 months (range, 6-228 months). A total of 368 optic nerves were investigated. All clinically impaired optic nerves (n = 86, 23.3%) underwent therapeutic decompression. Of the 282 clinically intact nerves, 41 (15%) were surgically decompressed and 241 (85%) were followed expectantly. Improvement in visual function was reported in fifty-eight (67.4%) of the clinically impaired nerves after surgery. In the intact nerves group, long-term stable vision was achieved in 31/45 (75.6%) of the operated nerves, compared to 229/241 (95.1%) of the non-operated ones (p = 0.0003). Surgery in asymptomatic patients was associated with visual deterioration (RR 4.89; 95% CI 2.26-10.59).Most patients with CFD will remain asymptomatic during long-term follow-up. Expectant management is recommended in asymptomatic patients even in the presence of radiological evidence of ONC

    InterGEO: a digital platform for university education on geomorphological heritage

    Get PDF
    The project InterGEO was carried out with the objective to disseminate knowledge on geomorphological heritage by developing a digital learning platform. It aims at improving students' autonomy by the reduction of face-to-face teaching and increasing autonomous learning as well as promoting international interactions between students interested in geomorphological heritage. A completely free-access virtual course on geomorphosites was developed with the Learning Management System Moodle. The course is divided into 24 thematic chapters, each of them containing a short description, a list of references and selected publications, as well as other educational material (videos, virtual fieldtrips, etc.). In particular, several videos allow presenting in a dynamic way concepts and examples. The paper presents the tool and its use in academic programmes in six European universities, where it was tested, in various contexts (Bachelors' and Masters' programmes; students in geography or geology; general courses in geomorphology and specific courses on geoheritage and geoconservation), before discussing the advantages and challenges the tool is facing. The InterGEO platform is an easy-to-use and friendly educational tool, which allows developing blended learning activities; it is flexible and adaptable in various learning contexts.The coordination tasks (appointment of an assistant) and two workshops in Lausanne were financed by the University of Lausanne (Teaching Innovation Fund and Investment Fund of the Faculty of Geosciences and Environment, FGSE). The videos were designed and created with support of the universities of Lausanne (TIF) and Savoie Mont Blanc (IDEFI Promising and ReflexPro; LabEx ITEM)

    Rhinitis in the geriatric population

    Get PDF
    The current geriatric population in the United States accounts for approximately 12% of the total population and is projected to reach nearly 20% (71.5 million people) by 2030[1]. With this expansion of the number of older adults, physicians will face the common complaint of rhinitis with increasing frequency. Nasal symptoms pose a significant burden on the health of older people and require attention to improve quality of life. Several mechanisms likely underlie the pathogenesis of rhinitis in these patients, including inflammatory conditions and the influence of aging on nasal physiology, with the potential for interaction between the two. Various treatments have been proposed to manage this condition; however, more work is needed to enhance our understanding of the pathophysiology of the various forms of geriatric rhinitis and to develop more effective therapies for this important patient population

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape
    corecore