249 research outputs found

    Clinical development of new prophylactic antimalarial drugs after the 5th Amendment to the Declaration of Helsinki

    Get PDF
    Malaria is of continuing concern in nonimmune traveling populations. Traditionally, antimalarial drugs have been developed as agents for dual indications (treatment and prophylaxis). However, since 2000, when the 5th Amendment to the Declaration of Helsinki (DH2000) was adopted, development of new malaria prophylaxis drugs in this manner has ceased. As a consequence, there may not be any new drugs licensed for this indication in the foreseeable future. Major pharmaceutical companies have interpreted DH2000 to mean that the traditional development paradigm may be considered unethical because of doubt over the likelihood of benefit to endemic populations participating in clinical studies, the use of placebo, and the sustainability of post-trial access to study medications. In this article, we explore the basis of these concerns and suggest that the traditional development paradigm remains ethical under certain circumstances. We also consider alternative approaches that may be more attractive to sponsors as they either do not use placebo, or utilize populations in endemic countries who may unambiguously benefit. These approaches represent the way forward in the future, but are at present unproven in clinical practice, and face numerous regulatory, logistical and technical challenges. Consequently, in the short term, we argue that the traditional clinical development paradigm remains the most feasible approach and is ethical and consistent with the spirit of DH2000 under the appropriate circumstances

    In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5

    Get PDF
    Two types of short double-stranded RNA molecules, namely microRNAs (miRNAs) and short interfering RNAs (siRNAs), have emerged recently as important regulators of gene expression. Although these molecules show similar sizes and structural features, the mechanisms of action underlying their respective target silencing activities appear to differ: siRNAs act primarily through mRNA degradation, whereas most miRNAs appear to act primarily through translational inhibition. Our understanding of how these overlapping pathways are differentially regulated within the cell remains incomplete. In the present work, quantitative fluorescence microscopy was used to study how siRNAs are processed within human cells. We found that siRNAs are excluded from non-nucleolar areas of the nucleus in an Exportin-5 dependent process that specifically recognizes key structural features shared by these and other small RNAs such as miRNAs. We further established that the Exportin-5-based exclusion of siRNAs from the nucleus can, when Exp5 itself is inhibited, become a rate-limiting step for siRNA-induced silencing activity. Exportin 5 therefore represents a key point of intersection between the siRNA and miRNA pathways, and, as such, is of fundamental importance for the design and interpretation of RNA interference experimentation

    H-1-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents

    Get PDF
    This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children.Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years.In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS), and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009) when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002). No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol.Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk

    Real-World Therapies and the Problem of Vivax Malaria

    Full text link

    siRNA-Like Double-Stranded RNAs Are Specifically Protected Against Degradation in Human Cell Extract

    Get PDF
    RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras) to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET). We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand) double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time

    A Simple Scoring System to Differentiate between Relapse and Re-Infection in Patients with Recurrent Melioidosis

    Get PDF
    Melioidosis is a serious infectious disease caused by the Gram-negative bacterium, Burkholderia pseudomallei. This organism is present in the environment in areas where melioidosis is endemic (most notably East Asia and Northern Australia), and infection is acquired following bacterial inoculation or inhalation. Despite prolonged oral eradicative treatment, recurrent melioidosis occurs in approximately 10% of survivors of acute melioidosis. Recurrent melioidosis can be caused by relapse (failure of initial eradicative treatment) or re-infection with a new infection. The aim of this study was to develop a simple scoring system to distinguish between re-infection and relapse, since this has implications for antimicrobial treatment of the recurrent episode, but telling the two apart normally requires bacterial genotyping. A prospective study of melioidosis patients in NE Thailand conducted between 1986 and 2005 identified 141 patients with recurrent melioidosis. Of these, 92 patients had relapse and 49 patients had re-infection as confirmed by genotyping techniques. We found that relapse was associated with previous inadequate treatment and shorter time to clinical features of recurrence, while re-infection was associated with renal insufficiency and presentation during the rainy season. A simple scoring index to help distinguish between relapse and re-infection was developed to provide important bedside information where rapid bacterial genotyping is unavailable. Guidelines are provided on how this scoring system could be implemented

    Intravenous pharmacokinetics, oral bioavailability, dose proportionality and in situ permeability of anti-malarial lumefantrine in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the wide spread use of lumefantrine, there is no study reporting the detailed preclinical pharmacokinetics of lumefantrine. For the development of newer anti-malarial combination(s) and selection of better partner drugs, it is long felt need to understand the detailed preclinical pharmacokinetics of lumefantrine in preclinical experimental animal species. The focus of present study is to report bioavailability, pharmacokinetics, dose linearity and permeability of lumefantrine in rats.</p> <p>Methods</p> <p>A single dose of 10, 20 or 40 mg/kg of lumefantrine was given orally to male rats (N = 5 per dose level) to evaluate dose proportionality. In another study, a single intravenous bolus dose of lumefantrine was given to rats (N = 4) at 0.5 mg/kg dose following administration through the lateral tail vein in order to obtain the absolute oral bioavailability and clearance parameters. Blood samples were drawn at predetermined intervals and the concentration of lumefantrine and its metabolite desbutyl-lumefantrine in plasma were determined by partially validated LC-MS/MS method. <it>In-situ </it>permeability study was carried in anaesthetized rats. The concentration of lumefantrine in permeability samples was determined using RP-HPLC.</p> <p>Results</p> <p>For nominal doses increasing in a 1:2:4 proportion, the C<sub>max </sub>and AUC<sub>0-∞ </sub>values increased in the proportions of 1:0.6:1.5 and 1:0.8:1.8, respectively. For lumefantrine nominal doses increasing in a 1:2:4 proportion, the C<sub>max </sub>and the AUC<sub>0-t </sub>values for desbutyl-lumefantrine increased in the proportions of 1:1.45:2.57 and 1:1.08:1.87, respectively. After intravenous administration the clearance (Cl) and volume of distribution (Vd) of lumefantrine in rats were 0.03 (± 0.02) L/h/kg and 2.40 (± 0.67) L/kg, respectively. Absolute oral bioavailability of lumefantrine across the tested doses ranged between 4.97% and 11.98%. Lumefantrine showed high permeability (4.37 × 10<sup>-5 </sup>cm/s) in permeability study.</p> <p>Conclusions</p> <p>The pharmacokinetic parameters of lumefantrine and its metabolite desbutyl-lumefantrine were successfully determined in rats for the first time. Lumefantrine displayed similar pharmacokinetics in the rat as in humans, with multiphasic disposition, low clearance, and a large volume of distribution resulting in a long terminal elimination half-life. The absolute oral bioavailability of lumefantrine was found to be dose dependent. Lumefantrine displayed high permeability in the <it>in-situ </it>permeability study.</p

    An empirical investigation of performance overhead in cross-platform mobile development frameworks

    Get PDF
    The heterogeneity of the leading mobile platforms in terms of user interfaces, user experience, programming language, and ecosystem have made cross-platform development frameworks popular. These aid the creation of mobile applications – apps – that can be executed across the target platforms (typically Android and iOS) with minimal to no platform-specific code. Due to the cost- and time-saving possibilities introduced through adopting such a framework, researchers and practitioners alike have taken an interest in the underlying technologies. Examining the body of knowledge, we, nonetheless, frequently encounter discussions on the drawbacks of these frameworks, especially with regard to the performance of the apps they generate. Motivated by the ongoing discourse and a lack of empirical evidence, we scrutinised the essential piece of the cross-platform frameworks: the bridge enabling cross-platform code to communicate with the underlying operating system and device hardware APIs. The study we present in the article benchmarks and measures the performance of this bridge to reveal its associated overhead in Android apps. The development of the artifacts for this experiment was conducted using five cross-platform development frameworks to generate Android apps, in addition to a baseline native Android app implementation. Our results indicate that – for Android apps – the use of cross-platform frameworks for the development of mobile apps may lead to decreased performance compared to the native development approach. Nevertheless, certain cross-platform frameworks can perform equally well or even better than native on certain metrics which highlights the importance of well-defined technical requirements and specifications for deliberate selection of a cross-platform framework or overall development approach
    corecore