96 research outputs found
Recommended from our members
Measuring and using information gained by observing diffraction data.
The information gained by making a measurement, termed the Kullback-Leibler divergence, assesses how much more precisely the true quantity is known after the measurement was made (the posterior probability distribution) than before (the prior probability distribution). It provides an upper bound for the contribution that an observation can make to the total likelihood score in likelihood-based crystallographic algorithms. This makes information gain a natural criterion for deciding which data can legitimately be omitted from likelihood calculations. Many existing methods use an approximation for the effects of measurement error that breaks down for very weak and poorly measured data. For such methods a different (higher) information threshold is appropriate compared with methods that account well for even large measurement errors. Concerns are raised about a current trend to deposit data that have been corrected for anisotropy, sharpened and pruned without including the original unaltered measurements. If not checked, this trend will have serious consequences for the reuse of deposited data by those who hope to repeat calculations using improved new methods
Improved estimates of coordinate error for molecular replacement.
The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21,000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER
Recommended from our members
Factors influencing estimates of coordinate error for molecular replacement.
Good prior estimates of the effective root-mean-square deviation (r.m.s.d.) between the atomic coordinates of the model and the target optimize the signal in molecular replacement, thereby increasing the success rate in difficult cases. Previous studies using protein structures solved by X-ray crystallography as models showed that optimal error estimates (refined after structure solution) were correlated with the sequence identity between the model and target, and with the number of residues in the model. Here, this work has been extended to find additional correlations between parameters of the model and the target and hence improved prior estimates of the coordinate error. Using a graph database, a curated set of 6030 molecular-replacement calculations using models that had been solved by X-ray crystallography was analysed to consider about 120 model and target parameters. Improved estimates were achieved by replacing the sequence identity with the Gonnet score for sequence similarity, as well as by considering the resolution of the target structure and the MolProbity score of the model. This approach was extended by analysing 12 610 additional molecular-replacement calculations where the model was determined by NMR. The median r.m.s.d. between pairs of models in an ensemble was found to be correlated with the estimated r.m.s.d. to the target. For models solved by NMR, the overall coordinate error estimates were larger than for structures determined by X-ray crystallography, and were more highly correlated with the number of residues
Phaser.MRage: automated molecular replacement.
Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement
Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination.
Macromolecular structures can be solved by molecular replacement provided that suitable search models are available. Models from distant homologues may deviate too much from the target structure to succeed, notwithstanding an overall similar fold or even their featuring areas of very close geometry. Successful methods to make the most of such templates usually rely on the degree of conservation to select and improve search models. ARCIMBOLDO_SHREDDER uses fragments derived from distant homologues in a brute-force approach driven by the experimental data, instead of by sequence similarity. The new algorithms implemented in ARCIMBOLDO_SHREDDER are described in detail, illustrating its characteristic aspects in the solution of new and test structures. In an advance from the previously published algorithm, which was based on omitting or extracting contiguous polypeptide spans, model generation now uses three-dimensional volumes respecting structural units. The optimal fragment size is estimated from the expected log-likelihood gain (LLG) values computed assuming that a substructure can be found with a level of accuracy near that required for successful extension of the structure, typically below 0.6 Å root-mean-square deviation (r.m.s.d.) from the target. Better sampling is attempted through model trimming or decomposition into rigid groups and optimization through Phaser's gyre refinement. Also, after model translation, packing filtering and refinement, models are either disassembled into predetermined rigid groups and refined (gimble refinement) or Phaser's LLG-guided pruning is used to trim the model of residues that are not contributing signal to the LLG at the target r.m.s.d. value. Phase combination among consistent partial solutions is performed in reciprocal space with ALIXE. Finally, density modification and main-chain autotracing in SHELXE serve to expand to the full structure and identify successful solutions. The performance on test data and the solution of new structures are described
Automating crystallographic structure solution and refinement of protein-ligand complexes.
High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation
From Monodisciplinary via Multidisciplinary to an Interdisciplinary Approach Investigating Air-Sea Interactions – a SOLAS Initiative
Understanding the physical and biogeochemical interactions and feedbacks between the ocean and atmosphere is a vital component of environmental and Earth system research. The ability to predict and respond to future environmental change relies on a detailed understanding of these processes. The Surface Ocean-Lower Atmosphere Study (SOLAS) is an international research platform that focuses on the study of ocean-atmosphere interactions, for which Future Earth is a sponsor. SOLAS instigated a collaborative initiative process to connect efforts in the natural and social sciences related to these processes, as a contribution to the emerging Future Earth Ocean Knowledge-Action Network (Ocean KAN). This is imperative because many of the recent changes in the Earth system are anthropogenic. An understanding of adaptation and counteracting measures requires an alliance of scientists from both domains to bridge the gap between science and policy. To this end, three SOLAS research areas were targeted for a case study to determine a more effective method of interdisciplinary research: valuing carbon and the ocean’s role; air-sea interactions, policy and stewardship; and, air-sea interactions and the shipping industry
Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.
BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation
- …