70 research outputs found

    The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain

    Full text link
    [EN] Phytophthora is one of the most important and aggressive plant pathogenic genera in agriculture and forestry. Early detection and identification of its pathways of infection and spread are of high importance to minimize the threat they pose to natural ecosystems. eDNA was extracted from soil and water from forests and plantations in the north of Spain. Phytophthora-specific primers were adapted for use in high-throughput Sequencing (HTS). Primers were tested in a control reaction containing eight Phytophthora species and applied to water and soil eDNA samples from northern Spain. Different score coverage threshold values were tested for optimal Phytophthora species separation in a custom-curated database and in the control reaction. Clustering at 99% was the optimal criteria to separate most of the Phytophthora species. Multiple Molecular Operational Taxonomic Units (MOTUs) corresponding to 36 distinct Phytophthora species were amplified in the environmental samples. Pyrosequencing of amplicons from soil samples revealed low Phytophthora diversity (13 species) in comparison with the 35 species detected in water samples. Thirteen of the MOTUs detected in rivers and streams showed no close match to sequences in international sequence databases, revealing that eDNA pyrosequencing is a useful strategy to assess Phytophthora species diversity in natural ecosystems.This project has been supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (EUPHRESCO-CEP: "Current and Emerging Phytophthoras: Research Supporting Risk Assessment And Risk Management"). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Català, S.; Pérez Sierra, AM.; Abad Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLoS ONE. 10(3):1-14. doi:10.1371/journal.pone.0119311S114103REICHARD, S. H., & WHITE, P. (2001). Horticulture as a Pathway of Invasive Plant Introductions in the United States. BioScience, 51(2), 103. doi:10.1641/0006-3568(2001)051[0103:haapoi]2.0.co;2Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.xTABERLET, P., COISSAC, E., HAJIBABAEI, M., & RIESEBERG, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. doi:10.1111/j.1365-294x.2012.05542.xSogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., … Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored «rare biosphere». Proceedings of the National Academy of Sciences, 103(32), 12115-12120. doi:10.1073/pnas.0605127103Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., … Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1(4), 283-290. doi:10.1038/ismej.2007.53Acosta-Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, 40(11), 2762-2770. doi:10.1016/j.soilbio.2008.07.022Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperateQuercus macrocarpaphyllosphere. New Phytologist, 184(2), 438-448. doi:10.1111/j.1469-8137.2009.02990.xNilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97-101. doi:10.1111/j.1574-6968.2009.01618.xCoince, A., Caël, O., Bach, C., Lengellé, J., Cruaud, C., Gavory, F., … Buée, M. (2013). Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology, 6(3), 223-235. doi:10.1016/j.funeco.2013.01.002Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). «Sight-unseen» detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157. doi:10.1111/j.1755-263x.2010.00158.xMonchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., Chabé, M., … Sime-Ngando, T. (2011). Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environmental Microbiology, 13(6), 1433-1453. doi:10.1111/j.1462-2920.2011.02444.xJobard, M., Rasconi, S., Solinhac, L., Cauchie, H.-M., & Sime-Ngando, T. (2012). Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environmental Microbiology, 14(9), 2480-2494. doi:10.1111/j.1462-2920.2012.02771.xLivermore, J. A., & Mattes, T. E. (2013). Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environmental Microbiology, 15(8), 2333-2341. doi:10.1111/1462-2920.12106NAKAYAMA, J., JIANG, J., WATANABE, K., CHEN, K., NINXIN, H., MATSUDA, K., … LEE, Y.-K. (2013). Up to Species-level Community Analysis of Human Gut Microbiota by 16S rRNA Amplicon Pyrosequencing. Bioscience of Microbiota, Food and Health, 32(2), 69-76. doi:10.12938/bmfh.32.69CREER, S., & SINNIGER, F. (2012). Cosmopolitanism of microbial eukaryotes in the global deep seas. Molecular Ecology, 21(5), 1033-1035. doi:10.1111/j.1365-294x.2012.05437.xDavey, M. L., Heegaard, E., Halvorsen, R., Kauserud, H., & Ohlson, M. (2012). Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Molecular Ecology, 22(2), 368-383. doi:10.1111/mec.12122Weber, C. F., Vilgalys, R., & Kuske, C. R. (2013). Changes in Fungal Community Composition in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil Horizon. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00078Bergmark, L., Poulsen, P. H. B., Al-Soud, W. A., Norman, A., Hansen, L. H., & Sørensen, S. J. (2012). Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiology Letters, 333(1), 77-84. doi:10.1111/j.1574-6968.2012.02601.xLi, L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L. H., Magid, J., & Sørensen, S. J. (2013). Investigating the Diversity of Pseudomonas spp. in Soil Using Culture Dependent and Independent Techniques. Current Microbiology, 67(4), 423-430. doi:10.1007/s00284-013-0382-xSCHENA, L., HUGHES, K. J. D., & COOKE, D. E. L. (2006). Detection and quantification ofPhytophthora ramorum,P. kernoviae,P. citricolaandP. quercinain symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7(5), 365-379. doi:10.1111/j.1364-3703.2006.00345.xTooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-Time Fluorescent Polymerase Chain Reaction Detection ofPhytophthora ramorumandPhytophthora pseudosyringaeUsing Mitochondrial Gene Regions. Phytopathology, 96(4), 336-345. doi:10.1094/phyto-96-0336Pavón, C. F., Babadoost, M., & Lambert, K. N. (2008). Quantification of Phytophthora capsici Oospores in Soil by Sieving-Centrifugation and Real-Time Polymerase Chain Reaction. Plant Disease, 92(1), 143-149. doi:10.1094/pdis-92-1-0143Than, D. J., Hughes, K. J. D., Boonhan, N., Tomlinson, J. A., Woodhall, J. W., & Bellgard, S. E. (2013). A TaqMan real-time PCR assay for the detection ofPhytophthora‘taxon Agathis’ in soil, pathogen of Kauri in New Zealand. Forest Pathology, 43(4), 324-330. doi:10.1111/efp.12034Chen, W., Djama, Z. R., Coffey, M. D., Martin, F. N., Bilodeau, G. J., Radmer, L., … Lévesque, C. A. (2013). Membrane-Based Oligonucleotide Array Developed from Multiple Markers for the Detection of Many Phytophthora Species. Phytopathology, 103(1), 43-54. doi:10.1094/phyto-04-12-0092-rScibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012Català S, Pérez-Sierra A, Berbegal M, Abad-Campos P. First approach into the knowledge of the Phytophthora species diversity in Mediterranean holm oak forests based on 454 parallel amplicon pyrosequencing of soil samples. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp 34; 2012.Català S, Pérez-Sierra A, Beltrán A, Abad-Campos P. Next Generation Sequencing shows Phytophthora species diversity in soil samples of Macaronesian laurel forests from the Canary Islands. Phytophthora in Forest and Natural Ecosystems 6th International IUFRO Working Party 7.02.09 Meeting, Córdoba, Spain, pp. 86; 2012.Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 30(1), 17-32. doi:10.1006/fgbi.2000.1202Andrews S. FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/Chou, H.-H., & Holmes, M. H. (2001). DNA sequence quality trimming and vector removal. Bioinformatics, 17(12), 1093-1104. doi:10.1093/bioinformatics/17.12.1093Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966Vettraino, A. M., Bonants, P., Tomassini, A., Bruni, N., & Vannini, A. (2012). Pyrosequencing as a tool for the detection ofPhytophthoraspecies: error rate and risk of false Molecular Operational Taxonomic Units. Letters in Applied Microbiology, 55(5), 390-396. doi:10.1111/j.1472-765x.2012.03310.xJung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95-110. doi:10.3767/003158509x442612Deagle, B. E., Eveson, J. P., & Jarman, S. N. (2006). Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Frontiers in Zoology, 3(1). doi:10.1186/1742-9994-3-11Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE, 6(8), e23398. doi:10.1371/journal.pone.0023398Guha Roy S, Grunwald NJ. The plant destroyer genus Phytophthora in the 21st century. In book: Review of Plant Pathology, Edition: Volume 6, Publisher: Scientific Publishers (India), Jodhpur, Editors: B.N.Chakraborty, B.B.L.Thakore, pp. In press; 2014.Brasier, C. M., Cooke, D. E. L., Duncan, J. M., & Hansen, E. M. (2003). Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. Mycological Research, 107(3), 277-290. doi:10.1017/s095375620300738xHüberli, D., Hardy, G. E. S. J., White, D., Williams, N., & Burgess, T. I. (2013). Fishing for Phytophthora from Western Australia’s waterways: a distribution and diversity survey. Australasian Plant Pathology, 42(3), 251-260. doi:10.1007/s13313-012-0195-6Jung, T., Stukely, M. J. C., Hardy, G. E. S. J., White, D., Paap, T., Dunstan, W. A., & Burgess, T. I. (2011). Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: evolutionary and ecological implications. Persoonia - Molecular Phylogeny and Evolution of Fungi, 26(1), 13-39. doi:10.3767/003158511x557577Brasier, C. M., Sanchez-Hernandez, E., & Kirk, S. A. (2003). Phytophthora inundata sp. nov., a part heterothallic pathogen of trees and shrubs in wet or flooded soils. Mycological Research, 107(4), 477-484. doi:10.1017/s0953756203007548Hansen, E. M., Reeser, P. W., & Sutton, W. (2012). PhytophthoraBeyond Agriculture. Annual Review of Phytopathology, 50(1), 359-378. doi:10.1146/annurev-phyto-081211-172946Reeser, P. W., Sutton, W., Hansen, E. M., Remigi, P., & Adams, G. C. (2011). Phytophthora species in forest streams in Oregon and Alaska. Mycologia, 103(1), 22-35. doi:10.3852/10-013Nechwatal, J., Bakonyi, J., Cacciola, S. O., Cooke, D. E. L., Jung, T., Nagy, Z. Á., … Brasier, C. M. (2012). The morphology, behaviour and molecular phylogeny ofPhytophthorataxon Salixsoil and its redesignation asPhytophthora lacustrissp. nov. Plant Pathology, 62(2), 355-369. doi:10.1111/j.1365-3059.2012.02638.xHuai, W. -x., Tian, G., Hansen, E. M., Zhao, W. -x., Goheen, E. M., Grünwald, N. J., & Cheng, C. (2013). Identification ofPhytophthoraspecies baited and isolated from forest soil and streams in northwestern Yunnan province, China. Forest Pathology, 43(2), 87-103. doi:10.1111/efp.12015Oh, E., Gryzenhout, M., Wingfield, B. D., Wingfield, M. J., & Burgess, T. I. (2013). Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus, 4(1), 123-131. doi:10.5598/imafungus.2013.04.01.1

    First report of Phytopythium litorale causing root rot of apple in Turkey

    No full text

    Phytophthora gallica sp. nov., a new species from rhizosphere soil of declining oak and reed stands in France and Germany

    No full text
    A non-papillate, slow-growing Phytophthora species, which could not be assigned to any existing taxon, was isolated from rhizosphere soil of a declining oak in Northeast France, and from the rhizosphere of Phragmites australis at Lake Constance in south-west Germany in 1998 and 2004, respectively. We describe this species, previously informally designated Phytophthora taxon ‘G’, as Phytophthora gallica sp. nov. Morphology, growth rates, and pathogenicity against cuttings of riparian tree species and leaves of reed are described and compared with those of morphologically and phylogenetically similar Phytophthora species. P. gallica produces colonies with limited aerial mycelium and variable growth patterns. Gametangia are not formed in single or mixed cultures with tester strains of known mating types. P. gallica produces globose and elongated irregular chlamydospores, of which a high proportion is abortive. In water culture irregular hyphal swellings and non-papillate persistent sporangia are formed abundantly. P. gallica is moderately aggressive to Alnus glutinosa and Fagus sylvatica, weakly aggressive to Quercus robur and Salix alba and non-pathogenic to Fraxinus excelsior and Phragmites australis. According to ITS and mtDNA sequence data P. gallica belongs to a distinct Phytophthora clade, with P. boehmeriae and P. kernoviae being the closest relatives. The origin of P. gallica and its ecological role in wet ecosystems remain unclear
    corecore