1,981 research outputs found

    The effect of quantum memory on quantum games

    Full text link
    We study quantum games with correlated noise through a generalized quantization scheme. We investigate the effects of memory on quantum games, such as Prisoner's Dilemma, Battle of the Sexes and Chicken, through three prototype quantum-correlated channels. It is shown that the quantum player enjoys an advantage over the classical player for all nine cases considered in this paper for the maximally entangled case. However, the quantum player can also outperform the classical player for subsequent cases that can be noted in the case of the Battle of the Sexes game. It can be seen that the Nash equilibria do not change for all the three games under the effect of memory.Comment: 26 pages, 7 ps figure

    The Ultimate Solution to the Quantum Battle of the Sexes game

    Full text link
    We present the unique solution to the Quantum Battle of the Sexes game. We show the best result which can be reached when the game is played according to Marinatto and Weber's scheme. The result which we put forward does not surrender the criticism of previous works on the same topic.Comment: 8 page

    Simulation of continuous variable quantum games without entanglement

    Full text link
    A simulation scheme of quantum version of Cournot's Duopoly is proposed, in which there is a new Nash equilibrium that may be also Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of the firm 1 and firm 2 in Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of "virtual cooperation". It is also found that asymmetric photon loss in this simulation scheme plays a similar role with the asymmetric entangled states in the quantum game. PACS numbers: 02.50.Le, 03.67.-aComment: 7 pages, 4 figures, RevTex, some contents have been revise

    Adsorption and Desorption Isotherms Of Desiccants for Dehumidification Applications: Silica Aerogels and Silica Aerogel Coatings on Metal Foams

    Get PDF
    Silica aerogels are frequently employed as solid desiccants in enthalpy wheels for dehumidifying the supply stream in air-conditioning systems. These desiccant materials possess good moisture adsorption and desorption characteristics due to their porous structure. Analysis of adsorption and desorption isotherms is critical for performance characterization and is often performed to evaluate the capacity and transient performance of desiccant-based dehumidification systems. The current study is focused on the adsorption and desorption isotherms of solid silica aerogels and silica aerogel coatings on open-cell metal-foam substrates. The sol-gel process is adopted to synthesize silica aerogels using different basic (ammonium hydroxide, sodium hydroxide, potassium hydroxide) and acidic (hydrofluoric acid, steric acid, hydrogen peroxide) catalysts, with the same precipitator (tetra methyl orthosilicate-TMOS) and solvent (methanol). Scanning electron microscopy is used to characterize the microstructure of super-critically dried aerogels and adsorption/desorption isotherms for the different samples are obtained by the dynamic vapor sorption method. The steady-state moisture adsorption and desorption capacity of silica aerogels is affected by their porous structure, which depends on the synthesis technique used to prepare the silica aerogels. For the silica aerogel coatings on metal foams, the substrate structure and surface area also play an important role. The effect of the substrate surface area on adsorption/desorption capacity is analyzed by comparing the isotherms for solid silica aerogel samples, and silica aerogels coatings on flat plates and on metal foams with different pore sizes

    Mass Diffusion Coefficient Of Desiccants For Dehumdification Applications: Silica Aerogels And Silica Aerogel Coatings On Metal Foams

    Get PDF
    Silica aerogels prepared by the sol-gel process are often used as solid desiccants in enthalpy wheels for dehumidifying ventilation air in air-conditioning systems. These hygroscopic materials have good moisture adsorption and desorption characteristics due to their porous structure. The current study is focused on the evaluation of the mass diffusivity of solid silica aerogels and silica aerogel coatings on substrates, which determines the rate at which a dehumidification process can be performed. The mass diffusivity of silica aerogels is affected by their porous structure which depends on the synthesis technique used to prepare the silica aerogels. The sol-gel process is used to prepared silica aerogels using various basic (ammonium hydroxide, sodium hydroxide, potassium hydroxide) and acidic (hydrofluoric acid, steric acid, hydrogen peroxide) catalysts with the same precipitator (tetra methyl orthosilicate-TMOS) and solvent (methanol). Scanning electron microscopy is used to analyze the microstructure of supercritically dried aerogels. The dynamic vapor sorption method is used to determine the effective mass diffusivity for the different silica aerogels. It is found that the mass diffusivity is related to the microstructure of silica aerogels, which depends on the catalysts used in the sol-gel process; however, the value for mass diffusivities for solid desiccants and desiccant coatings are similar. In addition, a parametric study is conducted to determine the effect of relative humidity and temperature on the adsorption and desorption mass diffusivity

    Toxin Induced Parkinsonism and Hospitalization Related Adverse Outcome Mitigation for Parkinson’s Disease: A Comprehensive Review

    Get PDF
    Patients with Parkinson’s disease admitted to the hospital have unique presentations. This unique subset of patients requires a multidisciplinary approach with a knowledge-based care team that can demonstrate awareness of complications specific to Parkinson’s disease to reduce critical care admissions, morbidity, and mortality. Early recognition of toxic exposures, medication withdrawals, or medication-induced symptoms can reduce morbidity and mortality. This review can assist in the critical assessment of new or exacerbating Parkinson’s disease symptoms

    A scheduling theory framework for GPU tasks efficient execution

    Get PDF
    Concurrent execution of tasks in GPUs can reduce the computation time of a workload by overlapping data transfer and execution commands. However it is difficult to implement an efficient run- time scheduler that minimizes the workload makespan as many execution orderings should be evaluated. In this paper, we employ scheduling theory to build a model that takes into account the device capabili- ties, workload characteristics, constraints and objec- tive functions. In our model, GPU tasks schedul- ing is reformulated as a flow shop scheduling prob- lem, which allow us to apply and compare well known methods already developed in the operations research field. In addition we develop a new heuristic, specif- ically focused on executing GPU commands, that achieves better scheduling results than previous tech- niques. Finally, a comprehensive evaluation, showing the suitability and robustness of this new approach, is conducted in three different NVIDIA architectures (Kepler, Maxwell and Pascal).Proyecto TIN2016- 0920R, Universidad de Málaga (Campus de Excelencia Internacional Andalucía Tech) y programa de donación de NVIDIA Corporation

    Sonochemical Modification of Carbon Nanotubes for Enhanced Nanocomposite Performance

    Get PDF
    Multi-walled carbon nanotubes (CNTs) have been treated using 20 kHz ultrasound in combination with dilute nitric and sulfuric acids at much lower concentrations than previously reported. The measurements revealed an optimum set of sonication conditions (in this case 30 min at 12 W cm−2) exists to overcome aggregation of the nanotubes and to allow efficient dispersion in ethanol or in chitosan. Transmission electron microscopy and Raman spectroscopy suggested the removal of amorphous material and reduction of the CNT diameter as well as modifications to their defect structures. The surface oxidation was determined by FTIR spectroscopy. At longer times or higher ultrasound intensities, degradation such as nanotube shortening and additional defect generation in the graphitic network occurred and the benefits of using ultrasound decreased. The modified CNTs were used as fillers for chitosan films and gave a tenfold increase in tensile strength and integrity of the films. The methodology was combined with sonochemical generation of gold or iron oxide nanoparticles to produce a range of functional membranes for catalytic reductive hydrogenation or dye degradation under conditions that are more environmentally benign than those previously used. Our results further add to the usefulness of sonochemistry as a valuable tool in preparative materials chemistry but also illustrate the crucial importance of careful control over the experimental conditions if optimum results are to be obtained

    Dilemma and Quantum Battle of Sexes

    Full text link
    We analysed quantum version of the game battle of sexes using a general initial quantum state. For a particular choice of initial entangled quantum state it is shown that the classical dilemma of the battle of sexes can be resolved and a unique solution of the game can be obtained.Comment: Revised, Latex, 9 pages, no figure, corresponding author's email: [email protected]
    corecore