484 research outputs found
Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA
One year of back-scattering lidar cloud boundaries and optical depth were analysed for coincident inter-comparison with the latest processed versions of the NASA-TERRA MISR stereo and MODIS CO2-slicing operational cloud top heights. Optically thin clouds were found to be accurately characterised by the MISR cloud top height product as long as no other cloud was present at lower altitude. MODIS cloud top heights were generally found within the cloud extent retrieved by lidar; agreement improved as cloud optical depth increased and when CO2-slicing was the only technique used for the retrieval. The difference between Lidar and MISR cloud top heights was found to lie between −0.1 and 0.4 km for low clouds and between 0.1 and 3.1 km for high clouds. The difference between Lidar and MODIS cloud top heights was found to lie between −1.2 and 1.5 km for low clouds and between −1.4 and 2.7 km for high clouds
Minimal subtraction and the Callan-Symanzik equation
The usual proof of renormalizability using the Callan-Symanzik equation makes
explicit use of normalization conditions. It is shown that demanding that the
renormalization group functions take the form required for minimal subtraction
allows one to prove renormalizability using the Callan-Symanzik equation,
without imposing normalization conditions. Scalar field theory and quantum
electrodynamics are treated.Comment: 6 pages, plain Te
Probing Spin-Charge Separation in Tunnel-Coupled Parallel Quantum Wires
Interactions in one-dimensional (1D) electron systems are expected to cause a
dynamical separation of electronic spin and charge degrees of freedom. A
promising system for experimental observation of this non-Fermi-liquid effect
consists of two quantum wires coupled via tunneling through an extended uniform
barrier. Here we consider the minimal model of an interacting 1D electron
system exhibiting spin-charge separation and calculate the differential
tunneling conductance as well as the density-density response function. Both
quantities exhibit distinct strong features arising from spin-charge
separation. Our analysis of these features within the minimal model neglects
interactions between electrons of opposite chirality and applies therefore
directly to chiral 1D electron systems realized, e.g., at the edge of integer
quantum-Hall systems. Physical insight gained from our results is useful for
interpreting current experiment in quantum wires as our main conclusions still
apply with nonchiral interactions present. In particular, we discuss the effect
of charging due to applied voltages, and the possibility to observe spin-charge
separation in a time-resolved experiment.Comment: 9 pages, 3 figures, expanded version with many detail
The fractional quantum Hall effect in infinite layer systems
Stacked two dimensional electron systems in transverse magnetic fields
exhibit three dimensional fractional quantum Hall phases. We analyze the
simplest such phases and find novel bulk properties, e.g., irrational braiding.
These phases host ``one and a half'' dimensional surface phases in which motion
in one direction is chiral. We offer a general analysis of conduction in the
latter by combining sum rule and renormalization group arguments, and find that
when interlayer tunneling is marginal or irrelevant they are chiral semi-metals
that conduct only at T > 0 or with disorder.Comment: RevTeX 3.0, 4p., 2 figs with epsf; reference to the detailed
companion paper cond-mat/0006506 adde
Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts
Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report
Edge Dynamics in Quantum Hall Bilayers II: Exact Results with Disorder and Parallel Fields
We study edge dynamics in the presence of interlayer tunneling, parallel
magnetic field, and various types of disorder for two infinite sequences of
quantum Hall states in symmetric bilayers. These sequences begin with the 110
and 331 Halperin states and include their fractional descendants at lower
filling factors; the former is easily realized experimentally while the latter
is a candidate for the experimentally observed quantum Hall state at a total
filling factor of 1/2 in bilayers. We discuss the experimentally interesting
observables that involve just one chiral edge of the sample and the correlation
functions needed for computing them. We present several methods for obtaining
exact results in the presence of interactions and disorder which rely on the
chiral character of the system. Of particular interest are our results on the
331 state which suggest that a time-resolved measurement at the edge can be
used to discriminate between the 331 and Pfaffian scenarios for the observed
quantum Hall state at filling factor 1/2 in realistic double-layer systems.Comment: revtex+epsf; two-up postscript at
http://www.sns.ias.edu/~leonid/ntwoup.p
Alteration of superconductivity of suspended carbon nanotubes by deposition of organic molecules
We have altered the superconductivity of a suspended rope of single walled
carbon nanotubes, by coating it with organic polymers. Upon coating, the normal
state resistance of the rope changes by less than 20 percent. But
superconductivity, which on the bare rope shows up as a substantial resistance
decrease below 300 mK, is gradualy suppressed. We correlate this to the
suppression of radial breathing modes, measured with Raman Spectroscopy on
suspended Single and Double-walled carbon nanotubes. This points to the
breathing phonon modes as being responsible for superconductivity in carbon
nanotubes
Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones
Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector
Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations
An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front
- …