6,501 research outputs found

    Automated shape optimization using a multigrid method and estimation of distribution algorithms

    Get PDF
    Topological shape optimization refers to the problem of finding the optimal shape of a mechanical structure by using a process for removing or inserting new holes or parts, it is to say, using a process which produces topological changes.This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA) with a suitable representation of the optimization variables. The optimum structure is such with the minimum weight which does not exceed a maximum von Mises stress and displacement. The contributions of this proposal resides in the definition of a candidate solution and the optimization method. The candidate solution representation is independent of the finer discretization used for analyzing candidate structures using the finite element method. Given a domain, which corresponds to the physical space where candidate structures reside, a vector φ=[φ1,φ2,...,φm] is used to define a smooth function φ(x,y) on Ω. If φ(x,y) is less than 0.5, such region does not have material, otherwise, it has.The smooth function φ(x,y) provides the advantage of having continuous regions with or without material while it depends on few optimization parameters φ, in addition, we can define an arbitrary number of parts or gaps as thinner or larger as needed. The EDA benefits from this representation, sampling random arbitrary structures and using probabilistic learning to determine whether a region must have material. The EDA is a global optimizer which can propose different topologies without the need of a priori knowledge neither initial solutions. In addition it uses a probabilistic model which smoothly evolve through generations. In consequence, at the beginning of the optimization process it arbitrarily proposes topologically different structures, while at the convergence phase it performs similar to a local search algorithm. The EDA uses few parameters which can be set in a straight forward manner. We report several study cases from the specialized literature, showing that our proposal outperforms reported results from up-to-date well performed algorithms

    Interplay Between Risk Perception, Behavior, and COVID-19 Spread

    Get PDF
    Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for controlling COVID-19. They are complemented by voluntary health-protective behavior, building a complex interplay between risk perception, behavior, and disease spread. We studied how voluntary health-protective behavior and vaccination willingness impact the long-term dynamics. We analyzed how different levels of mandatory NPIs determine how individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-19 incidence will surge, implying high morbidity and mortality before individuals react; if they are too strong, one expects a rebound wave once restrictions are lifted, challenging the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time and room to adapt their level of caution, mitigating disease spread effectively. When complemented with high vaccination rates, this also offers a robust way to limit the impacts of the Omicron variant of concern. Altogether, our work highlights the importance of appropriate mandatory NPIs to maximise the impact of individual voluntary actions in pandemic control

    Getting to the Root of Selenium Hyperaccumulation—Localization and Speciation of Root Selenium and Its Effects on Nematodes

    Get PDF
    Elemental hyperaccumulation protects plants from many aboveground herbivores. Little is known about effects of hyperaccumulation on belowground herbivores or their ecological interactions. To examine effects of plant selenium (Se) hyperaccumulation on nematode root herbivory, we investigated spatial distribution and speciation of Se in hyperaccumulator roots using X-ray microprobe analysis, and effects of root Se concentration on root-associated nematode communities. Perennial hyperaccumulators Stanleya pinnata and Astragalus bisulcatus, collected from a natural seleniferous grassland contained 100–1500 mg Se kg−1 root dry weight (DW). Selenium was concentrated in the cortex and epidermis of hyperaccumulator roots, with lower levels in the stele. The accumulated Se consisted of organic (C-Se-C) compounds, indistinguishable from methyl-selenocysteine. The field-collected roots yielded 5–400 nematodes g−1 DW in Baermann funnel extraction, with no correlation between root Se concentration and nematode densities. Even roots containing \u3e 1000 mg Se kg−1 DW yielded herbivorous nematodes. However, greenhouse-grown S. pinnata plants treated with Se had fewer total nematodes than those without Se. Thus, while root Se hyperaccumulation may protect plants from non-specialist herbivorous nematodes, Se-resistant nematode taxa appear to associate with hyperaccumulators in seleniferous habitats, and may utilize high-Se hyperaccumulator roots as food source. These findings give new insight into the ecological implications of plant Se (hyper)accumulation

    SPRWeb: preserving subjective responses to website colour schemes through automatic recolouring

    Get PDF
    Colours are an important part of user experiences on the Web. Colour schemes influence the aesthetics, first impressions and long-term engagement with websites. However, five percent of people perceive a subset of all colours because they have colour vision deficiency (CVD), resulting in an unequal and less-rich user experience on the Web. Traditionally, people with CVD have been supported by recolouring tools that improve colour differentiability, but do not consider the subjective properties of colour schemes while recolouring. To address this, we developed SPRWeb, a tool that recolours websites to preserve subjective responses and improve colour differentiability - thus enabling users with CVD to have similar online experiences. To develop SPRWeb, we extended existing models of non-CVD subjective responses to CVD, then used this extended model to steer the recolouring process. In a lab study, we found that SPRWeb did significantly better than a standard recolouring tool at preserving the temperature and naturalness of websites, while achieving similar weight and differentiability preservation. We also found that recolouring did not preserve activity, and hypothesize that visual complexity influences activity more than colour. SPRWeb is the first tool to automatically preserve the subjective and perceptual properties of website colour schemes thereby equalizing the colour-based web experience for people with CVD.Engineering and Applied Science

    Crystal structure of dichlorido(4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)iron(III) hexafluoridophosphate

    Get PDF
    The title compound, [FeCl₂(C₁₄H₃₀N₄)]PF₆, contains Fe³⁺ coordinated by the four nitro­gen atoms of an ethyl­ene cross-bridged cyclam macrocycle and two cis chloride ligands in a distorted octa­hedral environment. In contrast to other similar compounds this is a monomer. Inter­molecular C-H...Cl inter­actions exist in the structure between the complex ions. Comparison with the mononuclear Fe²⁺ complex of the same ligand shows that the smaller Fe³⁺ ion is more fully engulfed by the cavity of the bicyclic ligand. Comparison with the μ-oxido dinuclear complex of an unsubstituted ligand of the same size demonstrates that the methyl groups of 4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­decane prevent dimerization upon oxidation

    “It's Not What You Say, But How You Say it”: A Reciprocal Temporo-frontal Network for Affective Prosody

    Get PDF
    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions
    corecore