314 research outputs found

    Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As

    Get PDF
    We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.Comment: 22 pages, 14 figure

    Fast optical control of spin in semiconductor interfacial structures

    Full text link
    We report on a picosecond-fast optical removal of spin polarization from a self-confined photo-carrier system at an undoped GaAs/AlGaAs interface possessing superior long-range and high-speed spin transport properties. We employed a modified resonant spin amplification technique with unequal intensities of subsequent pump pulses to experimentally distinguish the evolution of spin populations originating from different excitation laser pulses. We demonstrate that the density of spins, which is injected into the system by means of the optical orientation, can be controlled by reducing the electrostatic confinement of the system using an additional generation of photocarriers. It is also shown that the disturbed confinement recovers within hundreds of picoseconds after which spins can be again photo-injected into the system

    A Small Transfer and Distribution System for Liquid Nitrogen

    Get PDF
    A system for remotely controlled filling of small Dewars with liquid nitrogen from a central storage Dewar vessel is described, consisting of a plunger type pump with an electromechanical driver and electromechanical ball type valves for distribution of liquid nitrogen. The preset nitrogen level in the small Dewars is kept constant by automatic refilling. The delivery is adjustable in steps by frequency change from 2.5 to 25 cm3/s, and delivery height up to 2 meters is assured

    Further support for the alignment of cattle along magnetic field lines: reply to Hert et al.

    Get PDF
    Hert et al. (J Comp Physiol A, 2011) challenged one part of the study by Begall et al. (PNAS 105:13451–13455, 2008) claiming that they could not replicate the finding of preferential magnetic alignment of cattle recorded in aerial images of Google Earth. However, Hert and co-authors used a different statistical approach and applied the statistics on a sample partly unsuitable to examine magnetic alignment. About 50% of their data represent noise (resolution of the images is too poor to enable unambiguous measurement of the direction of body axes, pastures are on slopes, near settlements or high voltage power-lines, etc.). Moreover, the authors have selected for their analysis only ~ 40% of cattle that were present on the pastures analyzed. Here, we reanalyze all usable data and show that cattle significantly align their body axes in North–South direction on pastures analyzed by Hert and co-authors. This finding thus supports our previous study. In addition, we show by using aerial Google Earth images with good resolution, that the magnetic alignment is more pronounced in resting than in standing cattle

    Experimental observation of the optical spin-orbit torque

    Full text link
    Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap with arXiv:1101.104

    Voigt effect-based wide-field magneto-optical microscope integrated in a pump-probe experimental setup

    Get PDF
    In this work, we describe an experimental setup for a spatially resolved pump-probe experiment with an integrated wide-field magneto-optical (MO) microscope. The MO microscope can be used to study ferromagnetic materials with both perpendicular-to-plane and in-plane magnetic anisotropy via polar Kerr and Voigt effects, respectively. The functionality of the Voigt effect-based microscope was tested using an in-plane magnetized ferromagnetic semiconductor (Ga,Mn)As. It was revealed that the presence of mechanical defects in the (Ga,Mn)As epilayer alters significantly the magnetic anisotropy in their proximity. The importance of MO experiments with simultaneous temporal and spatial resolutions was demonstrated using a (Ga,Mn)As sample attached to a piezoelectric transducer, which produces a voltage-controlled strain. We observed a considerably different behavior in different parts of the sample that enabled us to identify sample parts where the epilayer magnetic anisotropy was significantly modified by the presence of the piezoelectric transducer and where it was not. Finally, we discuss the possible applicability of our experimental setup for the research of compensated antiferromagnets, where only MO effects even in magnetic moments are present

    Anisotropy of Magnetic Field and Velocity Fluctuations in the Solar Wind

    Get PDF
    We present a large statistical study of the fluctuation anisotropy in minimum variance (MV) frames of the magnetic field and solar wind velocity. We use 2, 10, 20, and 40 minute intervals of simultaneous magnetic field (the Wind spacecraft) and velocity (the Spektr-R spacecraft) observations. Our study confirms that magnetic turbulence is a composite of fluctuations varying along the mean magnetic field and those changing in the direction perpendicular to the mean field. Regardless of the length scale within the studied range of spacecraft-frame frequencies, ≈90% of the observed magnetic field fluctuations exhibit an MV direction aligned with the mean magnetic field, ≈10% of events have the MV direction perpendicular to the background field, and a negligible portion of fluctuations has no preferential direction. On the other hand, the MV direction of velocity fluctuations tends to be distributed more uniformly. An analysis of magnetic compressibility and density fluctuations suggests that the fluctuations resemble properties of Alfvénic fluctuations if the MV direction is aligned with background magnetic field whereas slow-mode-like fluctuations have the MV direction perpendicular to the background field. The proportion between Alfvénic and slow-mode-like fluctuations depends on plasma β and length scale: the dependence on the solar wind speed is weak. We present 3D numerical MHD simulations and show that the numerical results are compatible with our experimental results

    Dussertite BaFe3+3(AsO4)2(OH)5 : a Raman spectroscopic study of a hydroxy-arsenate mineral

    Get PDF
    The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units
    corecore