8,599 research outputs found

    The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells

    Get PDF
    Upregulation of functional voltage-gated Na+ channels (VGSCs) occurs in metastatic human breast cancer (BCa) in vitro and in vivo. The present study aimed to ascertain the specific involvement of the 'neonatal' splice variant of Nav1.5 (nNav1.5), thought to be predominant, in the VGSC-dependent invasive behaviour of MDA-MB-231 cells. Functional activity of nNav1.5 was suppressed by two different methods targeting nNav1.5: (i) small interfering RNA (siRNA), and (ii) a polyclonal antibody (NESO-pAb); effects upon migration and invasion were determined. nNav1.5 mRNA, protein and signalling were measured using real-time PCR, Western blotting, and patch clamp recording, respectively. Treatment with the siRNA rapidly reduced (by similar to 90%) the level of nNav1.5 (but not adult Nav1.5) mRNA, but the protein reduction was much smaller (similar to 30%), even after 13 days. Nevertheless, the siRNA reduced peak VGSC current density by 33%, and significantly increased the cells' sensitivity to nanomolar tetrodotoxin (TTX). Importantly, the siRNA suppressed in vitro migration by 43%, and eliminated the normally inhibitory effect of TTX. Migrated MDA-MB-231 cells expressed more nNav1.5 protein at the plasma membrane than non-migrated cells. Furthermore, NESO-pAb reduced migration by up to 42%, in a dose-dependent manner. NESO-pAb also reduced Matrigel invasion without affecting proliferation. TTX had no effect on cells already treated with NESO-pAb. It was concluded that nNav1.5 is primarily responsible for the VGSC-dependent enhancement of invasive behaviour in MDA-MB-231 cells. Accordingly, targeting nNav1.5 expression/activity may be useful in clinical management of metastatic BCa

    Bound - states for truncated Coulomb potentials

    Full text link
    The pseudoperturbative shifted - ll expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.Comment: TEX file, 22 pages. To appear in J. Phys. A: Math. & Ge

    Can Van Hove singularities be observed in relativistic heavy-ion collisions ?

    Full text link
    Based on general arguments the in-medium quark propagator in a quark-gluon plasma leads to a quark dispersion relation consisting of two branches, of which one exhibits a minimum at some finite momentum. This results in a vanishing group velocity for collective quark modes. Important quantities such as the production rate of low mass lepton pairs and mesonic correlators depend inversely on this group velocity. Therefore these quantities, which follow from self energy diagrams containing a quark loop, are strongly affected by Van Hove singularities (peaks and gaps). If these sharp structures could be observed in relativistic heavy-ion collisions it would reveal the physical picture of the QGP as a gas of quasiparticles.Comment: 12 pages including nine figures and style files, invited talk given at the ICPAQGP-2001, November 26-30, 2001, Jaipur, Indi

    d-Dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass

    Full text link
    The d-dimensional generalization of the point canonical transformation for a quantum particle endowed with a position-dependent mass in Schrodinger equation is described. Illustrative examples including; the harmonic oscillator, Coulomb, spiked harmonic, Kratzer, Morse oscillator, Poschl-Teller and Hulthen potentials are used as reference potentials to obtain exact energy eigenvalues and eigenfunctions for target potentials at different position-dependent mass settings.Comment: 14 pages, no figures, to appear in J. Phys. A: Math. Ge

    Flat-top oscillons in an expanding universe

    Full text link
    Oscillons are extremely long lived, oscillatory, spatially localized field configurations that arise from generic initial conditions in a large number of non-linear field theories. With an eye towards their cosmological implications, we investigate their properties in an expanding universe. We (1) provide an analytic solution for one dimensional oscillons (for the models under consideration) and discuss their generalization to 3 dimensions, (2) discuss their stability against long wavelength perturbations and (3) estimate the effects of expansion on their shapes and life-times. In particular, we discuss a new, extended class of oscillons with surprisingly flat tops. We show that these flat topped oscillons are more robust against collapse instabilities in (3+1) dimensions than their usual counterparts. Unlike the solutions found in the small amplitude analysis, the width of these configurations is a non-monotonic function of their amplitudes.Comment: v2-matches version published in Phys. Rev D. Updated references and minor modification to section 4.
    corecore