613 research outputs found

    Near-seafloor magnetic signatures unveil serpentinization dynamics at ultramafic-hosted hydrothermal sites

    Get PDF
    A near-seafloor magnetic and bathymetric survey conducted by the autonomous underwater vehicle AutoSub 6000 over intermediate-temperature, ultramafic-hosted Von Damm Vent Field (Mid-Cayman spreading center, Caribbean Sea) revealed a moderate positive magnetic anomaly, in accordance with the magnetic response of other known ultramafic-hosted hydrothermal vent fields. However, compared with low-temperature ultramafic-hosted hydrothermal activity, the magnetic signature of this intermediate-temperature site indicates a slightly stronger magnetization contrast between the hydrothermal system and its host, but it remains considerably weaker than at high-temperature ultramafic-hosted hydrothermal vent fields. This observation highlights the nonlinear increase of magnetization production with temperature, as iron partitions into weakly magnetic brucite under 200 Ā°C, but magnetite dominates above this temperature, leading to a sudden increase in the magnetic signature of a site. Our study is consistent with recent laboratory experiments and unveils the dynamics of the serpentinization reaction, enabling fine tuning of the magnetic technique for remotely locating hydrothermal systems. In addition to refining our understanding of the magnetic behavior of hydrothermal vent fields, these new results also reveal the orientation of the fluid pathway feeding the hydrothermal site and indicate the nonvertical structure of the complex network of fissures within the host rock and its associated tectonic featureā€”an oceanic core complex

    Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues

    Get PDF
    Eighty per cent of all mid-ocean spreading centres are slow. Using a mixture of global bathymetry data and ship-board multibeam echosounder data, we explore the morphology of global mid-ocean ridges and compare two slow spreading analogues: the Carlsberg Ridge in the north-west Indian Ocean between 57Ā°E and 60Ā°E, and the Kane to Atlantis super-segment of the Mid-Atlantic Ridge between 21Ā°N and 31Ā°N. At a global scale, mid-ocean spreading centres show an inverse correlation between segment length and spreading rate with segmentation frequency. Within this context, both the Mid-Atlantic Ridge super-segment and Carlsberg Ridge are similar: spreading at 22 and 26 mm/yr full rates respectively, being devoid of major transform faults, and being segmented by dextral, non-transform, second-order discontinuities. For these and other slow spreading ridges, we show that segmentation frequency varies inversely with flank height and ridge axis depth. Segments on both the Mid-Atlantic Ridge super-segment and Carlsberg Ridge range in aspect ratio (ridge flank height/axis width), depth and symmetry. Segments with high aspect ratios and deeper axial floors often have asymmetric rift flanks and are associated with indicators of lower degrees of melt flux. Segments with low aspect ratios have shallower axial floors, symmetric rift flanks, and evidence of robust melt supply. The relationship between segmentation, spreading rate, ridge depth and morphology, at both a global and local scale, is evidence that rates of melting of the underlying mantle and melt delivery to the crust play a significant role in determining the structure and morphology of slow spreading mid-ocean ridges

    Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction

    No full text
    Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250Ā°C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting

    Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle

    Get PDF
    The cycling of material from Earth's surface environment into its interior can couple mantle oxidation state to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the ridge into the deep mantle for long-term storage. Recycled oceanic crust may be entrained into mantle upwellings and melt under ocean islands, creating the potential for basalt chemistry to constrain solid Earthā€“hydrosphere redox coupling. Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal component, making it an ideal locality to investigate links between redox proxies and geochemical indices of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical and geochemical tracers of plume influence vary dramatically, with the basalts recording both long- and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES measurements of FeĀ³āŗ/āˆ‘Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit positive correlations between FeĀ³āŗ/āˆ‘Fe and trace element and isotopic signals of enrichment, and become progressively oxidised towards Iceland: fractionation-corrected FeĀ³āŗ/āˆ‘Fe increases by āˆ¼0.015 and Ī”QFM by āˆ¼0.2 log units. We rule out a role for sulfur degassing in creating this trend, and by considering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of the oxidised signal. To determine the ferric iron content of the recycled component ([Feā‚‚Oā‚ƒ]) we project observed liquid compositions to an estimate of Feā‚‚Oā‚ƒ in the pure enriched endmember melt, and then apply simple fractional melting models, considering lherzolitic and pyroxenitic source mineralogies, to estimate [Feā‚‚Oā‚ƒ] content. Propagating uncertainty through these steps, we obtain a range of [Feā‚‚Oā‚ƒ] for the enriched melts (0.9ā€“1.4 wt%) that is significantly greater than the ferric iron content of typical upper mantle lherzolites. This range of ferric iron contents is consistent with a hybridised lherzoliteā€“basalt (pyroxenite) mantle component. The oxidised signal in enriched Icelandic basalts is therefore potential evidence for seafloorā€“hydrosphere interaction having oxidised ancient mid-ocean ridge crust, generating a return flux of oxygen into the deep mantle.OS was supported by a Title A Fellowship from Trinity College, JM through NERC grant NE/J021539/1 and MH acknowledges a Junior Research Fellowship from Murray Edwards College, Cambridge. We acknowledge Diamond Light Source for time on beamline I18 under proposals SP9446, SP9456 and SP12130 and the support during our analytical sessions from beamline scientist Konstantin Ignatyev and principal beamline scientist Fred Mosselmans. The Smithsonian Institution National Museum of Natural History is thanked for their loan of NMNH 117393.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.epsl.2015.07.01

    YPFS Lessons Learned Oral History Project: An Interview with Arthur Murton

    Get PDF
    Suggested Citation Form: Murton, Arthur, 2020. ā€œLessons Learned Interview. Interview by Sandra Ward. Yale Program on Financial Stability Lessons Learned Oral History Project. February 13, 2020. Transcript. https://ypfs.som.yale.edu/library/ypfs-lesson-learned-oral-history-project-interview-arthur-murto

    A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge

    Get PDF
    Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses. Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (VAA = āˆ’1.09 to āˆ’0.86ā€°; 1SD = 0.02ā€“0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134ā€“0.151; 1SD = 0.005) or V/Sc (6.6ā€“8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland. Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes

    Post-fledging habitat selection in a rapidly declining farmland bird, the European turtle dove Streptopelia turtur

    Get PDF
    Post-fledging survival plays a vital role in the dynamics of bird populations and yet is the least studied avian life-stage. Habitat requirements post-fledging may have important implications for behaviour and survival, especially for declining populations in landscapes that have undergone wide-scale anthropogenic modification, resulting in an altered distribution and composition of habitats. The European Turtle Dove is a widespread but rapidly declining species both within the UK and across Europe. Reduced seed food availability is thought to influence breeding success of this species, but it is not known whether post-fledging survival may also be influenced by seed availability. Here, we use leg-ring radio-tag attachments to monitor post-fledging survival and movements in 15 Turtle Dove nestlings from eight nests monitored during 2014 as part of a wider autecological study. Fledglings remained in close proximity to their nest for three weeks post-tagging, spending more than half their time in the immediate vicinity (within āˆ¼ 20 m) of the nest. 95% of foraging trips during this period were within 329 m of the nest and fledglings selected seed-rich habitat (semi-natural grassland, low-intensity grazing, fallow and quarries). Fledglings that were heavier and in better body condition at seven days old were more likely to survive for 30 days post-fledging, and the proportion of available seed-rich habitat was a strong predictor of nestling weight and condition at seven days old. Whilst our sample size is modest, this study highlights the crucial role of food availability in juvenile survival, both while adults are feeding nestlings, and to recently fledged young, and the potential for agri-environment schemes providing foraging and nesting habitats in close proximity to provide important benefits

    Modern seafloor hydrothermal systems: new perspectives on ancient ore-forming processes

    Get PDF
    Seafloor massive sulfides are deposits of metal-bearing minerals that form on and below the seabed as a result of heated seawater interacting with oceanic crust. These occurrences are more variable than previously thought, and this variability is not necessarily reflected in the analogous volcanogenic massive sulfide deposits that are preserved in the ancient rock record. The geological differences affect both the geochemistry and the size of seafloor massive sulfide deposits. Current knowledge of the distribution, tonnage, and grade of seafloor massive sulfides is inadequate to rigorously assess their global resource potential due to the limitations in exploration and assessment technologies and to our current understanding of their 3-D characteristics
    • ā€¦
    corecore