6,605 research outputs found

    Thermoelectric energy harvester with a cold start of 0.6 °C

    Get PDF
    This paper presents the electrical and thermal design of a thermoelectric energy harvester power system and its characterisation. The energy harvester is powered by a single Thermoelectric Generator (TEG) of 449 couples connected via a power conditioning circuit to an embedded processor. The aim of the work presented in this paper is to experimentally confirm the lowest ΔT measured across the TEG (ΔTTEG) at which the embedded processor operates to allow for wireless communication. The results show that when a temperature difference of 0.6 °CΔTTEG is applied across the thermoelectric module, an input voltage of 23 mV is generated which is sufficient to activate the energy harvester in approximately 3 minutes. An experimental setup able to accurately maintain and measure very low temperatures is described and the electrical power generated by the TEG at these temperatures is also described. It was found that the energy harvester power system can deliver up to 30 mA of current at 2.2 V in 3ms pulses for over a second. This is sufficient for wireless broadcast, communication and powering of other sensor devices. The successful operation of the wireless harvester at such low temperature gradients offers many new application areas for the system, including those powered by environmental sources and body heat

    Polarization transitions in interacting ring 1D arrays

    Full text link
    Periodic nanostructures can display the dynamics of arrays of atoms while enabling the tuning of interactions in ways not normally possible in Nature. We examine one dimensional arrays of a ``synthetic atom,'' a one dimensional ring with a nearest neighbor Coulomb interaction. We consider the classical limit first, finding that the singly charged rings possess antiferroelectric order at low temperatures when the charge is discrete, but that they do not order when the charge is treated as a continuous classical fluid. In the quantum limit Monte Carlo simulation suggests that the system undergoes a quantum phase transition as the interaction strength is increased. This is supported by mapping the system to the 1D transverse field Ising model. Finally we examine the effect of magnetic fields. We find that a magnetic field can alter the electrostatic phase transition producing a ferroelectric groundstate, solely through its effect of shifting the eigenenergies of the quantum problem.Comment: 12 pages in two column format, 18 figure

    Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    Get PDF
    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite

    Development of an obstetrics triage tool for pharmacists in an urban medical centre

    Get PDF
    Obstetrics services are a high-throughput and high-risk environment poised for pharmacist involvement, but determining how to ideally allocate services is difficult. There is recent interest in the development of tools for service prioritisation, but none are specifically targeted to obstetrics. Therefore, the aim of this study was (1) to conduct a practice audit surveying the demographics of patients attending obstetrics wards at a high-capacity maternity hospital, and (2) to evaluate a triage tool developed to prioritise pharmacy services. A retrospective case review of women discharged after birth admissions was undertaken at a hospital in National Health Service (NHS) Scotland during June 2014. Demographic and admission data were collected, as well as pharmacist interventions and missed opportunities in patient care on postnatal wards. A pharmacy triage tool was developed and retrospectively applied to each case to ascertain a risk category that would trigger and target pharmacist review. Interventions/opportunities were classified as either clinical (medication-related) or administrative (potential for error development). 175 cases were reviewed with a median age of 29 years old. Eighty-six patients (49.1%) were retrospectively classified with elevated risk using the triage tool. A total of 117 charts (66.9%) were identified with missed opportunities for pharmacist intervention, which was significantly higher among patients classified as higher risk (75.6 vs. 58.4%, p=0.017). Compared to low risk patients, patients with a higher risk classification had lower rates of administrative missed opportunities (55.4 vs. 80.8%, p=0.015), but numerically higher rates of clinical (26.2 vs. 9.6%, p=NS) and mixed clinical/administrative (18.5 vs. 9.6%, p=NS) missed opportunities, although this failed to reach statistical significance. Evaluation of a triage tool for obstetric services demonstrated potential for prioritising higher risk patients for pharmacist review and addressing opportunities for clinical improvements

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    The detection of tightly closed flaws by nondestructive testing (NDT) methods

    Get PDF
    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability

    Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation

    Get PDF
    <b>Background</b>: The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre-carcinogen present in saliva, can be converted to nitrosating species and N-nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. <b>Aims</b>: To assess the effect of lipid and ascorbic acid on the nitrosative chemistry under conditions simulating the human proximal stomach. <b>Methods</b>: The nitrosative chemistry was modelled in vitro by measuring the nitrosation of four secondary amines under conditions simulating the proximal stomach. The N-nitrosamines formed were measured by gas chromatography–ion-trap tandem mass spectrometry, while nitric oxide and oxygen levels were measured amperometrically. <b>Results</b>: In absence of lipid, nitrosative stress was inhibited by ascorbic acid through conversion of nitrosating species to nitric oxide. Addition of ascorbic acid reduced the amount of N-nitrosodimethylamine formed by fivefold, N-nitrosomorpholine by .1000-fold, and totally prevented the formation of N-nitrosodiethylamine and N-nitrosopiperidine. In contrast, when 10% lipid was present, ascorbic acid increased the amount of Nnitrosodimethylamine, N-nitrosodiethylamine and N-nitrosopiperidine formed by approximately 8-, 60- and 140-fold, respectively, compared with absence of ascorbic acid. <b>Conclusion</b>: The presence of lipid converts ascorbic acid from inhibiting to promoting acid nitrosation. This may be explained by nitric oxide, formed by ascorbic acid in the aqueous phase, being able to regenerate nitrosating species by reacting with oxygen in the lipid phase
    • …
    corecore