4,807 research outputs found
Characterizing quantum dynamics with initial system-environment correlations
We fully characterize the reduced dynamics of an open quantum system
initially correlated with its environment. Using a photonic qubit coupled to a
simulated environment we tomographically reconstruct a superchannel---a
generalised channel that treats preparation procedures as inputs---from
measurement of the system alone, despite its coupling to the environment. We
introduce novel quantitative measures for determining the strength of initial
correlations, and to allow an experiment to be optimised in regards to its
environment.Comment: 10 pages, 15 figure
Dissipative dynamics of quantum discord under quantum chaotic environment
We investigate the dissipative dynamics of quantum discord in a decoherence
model with two initially entangled qubits in addition to a quantum kicked top.
The two qubits are uncoupled during the period of our study and one of them
interacts with the quantum kicked top. We find that the long time behavior of
quantum discord could be well described by the fidelity decay of the quantum
kicked top; for short time behavior, however, the phase of the amplitude of the
fidelity decay is necessary to provide more specific information about the
system. We have made comparison between the quantum kicked top and multi-mode
oscillator system in describing environment, and also compared the dynamics of
the entanglement with that of quantum discord.Comment: 5 pages, 3 figures, and Accepted by Europhysics Letter
Physician Executive Leadership: Assessing a Student-Led Approach to Healthcare Leadership Education in Medical School
Poster presented at: 14th Annual AMA Research Symposium in Orlando, Fl
Objective:
To investigate the effectiveness of Physican Leadership, an open access, student-led healthcare leadership program at Sidney Kimmel Medical College, in preparing to face five key emerging topics in medical practice: healthcare economics, health policy, care and quality and safety, law and medicine, and patient experience.
The Problem: Gaps in Medical Education
Healthcare in the US continues to evolve, and topics such as health policy, health finance, and patient experience are not central to the practice of medicine.
However, the sheer volume of material students are required to learn in the preclinical years makes it challenging to introduce new subjects into traditional medical school curricula. As a result, these topics in healthcare leadership are often left out. Indeed, only 40-50% of medical student report appropriate training in the practice of medicine, including subjects as medical economics, healthcare systems, and managed care.https://jdc.jefferson.edu/pel/1002/thumbnail.jp
Studies of uncontrolled air traffic patterns, phase 1
The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories
Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids
How state preparation can affect a quantum experiment: Quantum process tomography for open systems
We study the effects of preparation of input states in a quantum tomography
experiment. We show that maps arising from a quantum process tomography
experiment (called process maps) differ from the well know dynamical maps. The
difference between the two is due to the preparation procedure that is
necessary for any quantum experiment. We study two preparation procedures,
stochastic preparation and preparation by measurements. The stochastic
preparation procedure yields process maps that are linear, while the
preparations using von Neumann measurements lead to non-linear processes, and
can only be consistently described by a bi-linear process map. A new process
tomography recipe is derived for preparation by measurement for qubits. The
difference between the two methods is analyzed in terms of a quantum process
tomography experiment. A verification protocol is proposed to differentiate
between linear processes and bi-linear processes. We also emphasize the
preparation procedure will have a non-trivial effect for any quantum experiment
in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.
Nutritional Evaluation and Optimisation in Neonates (NEON): a randomised double-blind controlled trial of amino-acid regimen and intravenous lipid composition in preterm parenteral nutrition
- …
