6,709 research outputs found
Simplicity of eigenvalues in the Anderson model
We give a simple, transparent, and intuitive proof that all eigenvalues of
the Anderson model in the region of localization are simple
Statistical properties of spectral fluctuations for a quantum system with infinitely many components
Extending the idea formulated in Makino {\it{et al}}[Phys.Rev.E
{\bf{67}},066205], that is based on the Berry--Robnik approach [M.V. Berry and
M. Robnik, J. Phys. A {\bf{17}}, 2413], we investigate the statistical
properties of a two-point spectral correlation for a classically integrable
quantum system. The eigenenergy sequence of this system is regarded as a
superposition of infinitely many independent components in the semiclassical
limit. We derive the level number variance (LNV) in the limit of infinitely
many components and discuss its deviations from Poisson statistics. The slope
of the limiting LNV is found to be larger than that of Poisson statistics when
the individual components have a certain accumulation. This property agrees
with the result from the semiclassical periodic-orbit theory that is applied to
a system with degenerate torus actions[D. Biswas, M.Azam,and S.V.Lawande, Phys.
Rev. A {\bf 43}, 5694].Comment: 6 figures, 10 page
Magnetotail structures in a simulated Earth's magnetosphere
The structure of the magnetotail is investigated in a laboratory simulated magnetosphere. Particular emphasis is placed on the region of distant magnetotail where the closed field line region of the plasma sheet terminates and the process of reconnection takes place. Our study builds upon the previous investigation of the magnetotail where the main results were based on the magnetic field measurements in the tail region of the simulated magnetosphere. In this paper, more elaborate measurements of plasma flow and electric field are presented. Besides these measurements, this region of distant magnetotail is also explored by high resolution imaging with a gated optical imager (GOI) and by digital image analysis. These images clearly reveal a Y-type magnetic neutral line for the northward 'interplanetary' field (IMF) and a usual X-type for the southward IMF that confirms our previous results deduced from the magnetic field measurements. In the neighborhood of these neutral points a strong component of dawn to dusk electric field (E(sub y)) and a counterstreaming plasma flow is also observed. Plasma flow is measured by using a double sided Faraday cup which is also used to measure the y-component of tail current (J(sub y)) at different locations. These measurements reveal that the tail current is not carried by ions as previously thought, rather it is carried by electrons alone
Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors
Substantial progress on field effect transistors "FETs" consisting of
semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces
of metallic nanotubes and impurities is reported. Nearly perfect removal of
metallic nanotubes is confirmed by optical absorption, Raman measurements, and
electrical measurements. This outstanding result was made possible in
particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT
powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs
processable solutions were applied to realize FET, embodying randomly or
preferentially oriented nanotube networks prepared by spin coating or
dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air
with very promising characteristics. The on-off current ratio is 10^5, the
on-current level is around 10 A, and the estimated hole mobility is larger
than 2 cm2 / V s
Non-Universal Critical Behaviour of Two-Dimensional Ising Systems
Two conditions are derived for Ising models to show non-universal critical
behaviour, namely conditions concerning 1) logarithmic singularity of the
specific heat and 2) degeneracy of the ground state. These conditions are
satisfied with the eight-vertex model, the Ashkin-Teller model, some Ising
models with short- or long-range interactions and even Ising systems without
the translational or the rotational invariance.Comment: 17 page
Determination of the absorption length of CO2, Nd:YAG and high power diode laser radiation for a selected grouting material
The laser beam absorption lengths of CO2, Nd:YAG and a high power diode laser (HPDL) radiation for a newly developed SiO2/Al2O3-based tile grout have been determined through the application of Beer-Lambert’s law. The findings revealed marked differences in the absorption lengths despite the material having similar beam absorption coefficients for the lasers. The absorption lengths for the SiO2/Al2O3-based tile grout for CO2, Nd:YAG and HPDL radiation were calculated as being 23211 m, 1934 m and 1838 m respectively. Moreover, this method of laser beam absorption length determination, which has hitherto been used predominantly with lasers operated in the pulsed mode, is shown to be valid for use with lasers operated in the continuous wave (CW) mode, depending upon the material being treated
The development and characteristics of a hand-held high power diode laser-based industrial tile grout removal and single-stage sealing system
As the field of laser materials processing becomes ever more diverse, the high power diode laser (HPDL) is now being regarded by many as the most applicable tool. The commercialisation of an industrial epoxy grout removal and single-stage ceramic tile grout sealing process is examined through the development of a hand-held HPDL device in this work. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given. The paper describes the characteristics and feasibility of the industrial epoxy grout removal process. A minimum power density of approximately 3 kW/cm2 was found to exist, whilst the minimum interaction time, below which there was no removal of epoxy tile grout, was found to be approximately 0.5 s. The maximum theoretical removal rate that may be achievable was calculated as being 65.98 mm2/s for a circular 2 mm diameter beam with a power density of 3 kW/cm2 and a traverse speed of 42 mm/s. In addition, the characteristics of the single-stage ceramic tile grout sealing are outlined. The single-stage ceramic tile grout sealing process yielded crack and porosity free seals which were produced in normal atmospheric conditions. Tiles were successfully sealed with power densities as low as 550 W/cm2 and at rates of up to 420 mm/min. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves
Disclination in Lorentz Space-Time
The disclination in Lorentz space-time is studied in detail by means of
topological properties of -mapping. It is found the space-time
disclination can be described in term of a Dirac spinor. The size of the
disclination, which is proved to be the difference of two sets of su(2)% -like
monopoles expressed by two mixed spinors, is quantized topologically in terms
of topological invariantswinding number. The projection of space-time
disclination density along an antisymmetric tensor field is characterized by
Brouwer degree and Hopf index.Comment: Revtex, 7 page
Decorrelation estimates for the eigenlevels of the discrete Anderson model in the localized regime
The purpose of the present work is to establish decorrelation estimates for
the locally renormalized eigenvalues of the discrete Anderson model near two
distinct energies inside the localization region. In dimension one, we prove
these estimates at all energies. In higher dimensions, the energies are
required to be sufficiently far apart from each other
- …
