7 research outputs found

    Microbe-induced epigenetic alterations in host cells: The coming era of patho-epigenetics of microbial infections. A review

    No full text
    It is well documented that the double-stranded DNA (dsDNA) genomes of certain viruses and the proviral genomes of retroviruses are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In parallel, proteins encoded by viral genomes may affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. This may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; immunodeficiency). Bacteria infecting mammals may cause diseases in a similar manner, by causing hypermethylation of key cellular promoters at CpG dinucleotides (promoter silencing, e.g. by Campylobacter rectus in the placenta or by Helicobacter pylori in gastric mucosa). I suggest that in addition to viruses and bacteria, other microparasites (protozoa) as well as macroparasites (helminths, arthropods, fungi) may induce pathological changes by epigenetic reprogramming of host cells they are interacting with. Elucidation of the epigenetic consequences of microbe-host interactions (the emerging new field of patho-epigenetics) may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development

    A 30 KB region of the Epstein-Barr virus genome is colinear with the rearranged human immunoglobulin gene loci: Implications for a “Ping-Pong Evolution” model for persisting viruses and their hosts

    No full text
    The left part of the Epstein-Barr virus (EBV) genome exhibits a strong colinearity of structural and functional elements with the immunoglobulin (Ig) gene loci which is only partially reflected in nucleotide sequence homologies. We propose that this colinearity may be the result of an inter-dependent co-evolution of the immunoglobulin loci together with EBV. Our observation could help elucidating the mechanisms of somatic hypermutation, explaining the ability of EBV to accidentally cause tumors, and shedding more light on the general mechanisms of viral and organismal evolution. We suggest that persisting viruses served as a complement for the organismal germline like in a ping-pong game and outline The Ping-Pong Evolution Hypothesis
    corecore