30 research outputs found
Hábitos de sueño en niños durante la cuarentena por Covid-19
INTRODUCCIÓN: El objetivo principal de esta investigación fue evaluar la percepción de los padres en
relación a la cantidad, calidad y patrones del sueño en niños, durante el confinamiento por pandemia por
Covid-19.
MATERIAL Y MÉTODO: Se llevó a cabo un estudio prospectivo, analítico, de corte transversal. Se realizó
una encuesta anónima, voluntaria, a través de plataforma virtual a los padres o tutores de niños de Argentina
que desearon participar en la misma.
RESULTADOS: Se incluyeron 1743 niños, de los cuales 830 (48 %) niños fueron de sexo femenino y 913
(52 %) de sexo masculino. En cuanto a la cantidad de horas de sueño nocturno, durante la cuarentena, el
promedio de tiempo que durmieron los niños fue 9,40 ± 1,76 horas. La media obtenida de la calidad de
sueño fue de 7,41 ± 2,16 puntos. En relación al horario de acostarse, se encontró una diferencia horaria de
1.60±1.88 horas, mayor durante la cuarentena (p<0.001). En el horario de despertar, se encontró una
diferencia 2.29±0.59 horas superior durante el confinamiento con respecto a los horarios previos al mismo
(p<0.001). En 673 (39 %) niños se presentó un aumento en la latencia de conciliación.
CONCLUSIÓN: Durante la cuarentena, la mayoría de los pacientes modificó sus patrones de sueño, con
aumento en la cantidad horas de sueño y disminución en la calidad del mismo. Además, se ha presentado
disrupción en el ritmo circadiano de sueño, con posible retraso de fase, y aumento en la latencia de
conciliación del sueño
A dependent nominal type theory
Nominal abstract syntax is an approach to representing names and binding
pioneered by Gabbay and Pitts. So far nominal techniques have mostly been
studied using classical logic or model theory, not type theory. Nominal
extensions to simple, dependent and ML-like polymorphic languages have been
studied, but decidability and normalization results have only been established
for simple nominal type theories. We present a LF-style dependent type theory
extended with name-abstraction types, prove soundness and decidability of
beta-eta-equivalence checking, discuss adequacy and canonical forms via an
example, and discuss extensions such as dependently-typed recursion and
induction principles
Relating coalgebraic notions of bisimulation
The theory of coalgebras, for an endofunctor on a category, has been proposed
as a general theory of transition systems. We investigate and relate four
generalizations of bisimulation to this setting, providing conditions under
which the four different generalizations coincide. We study transfinite
sequences whose limits are the greatest bisimulations
Health of children born from cryopreserved oocytes and embryos
© 2009 Informa UK Ltd. Assisted reproductive technologies (ART) can be regarded as a means to an end, where the goal is to produce healthy offspring. In order to fully measure the success of this process, it is not only important to ensure that the pregnancy progresses and results in live birth, but also that the health and well-being of the child are not adversely affected by the techniques themselves. Specific measurements of this latter aspect have been discussed extensively in the literature in two main ways. First, the proportion of children who have congenital abnormalities as a possible consequence of a particular type of ART technique. Second, the postnatal development of the child and whether it is comparable with their peers. This includes measurements of growth, neurodevelopment, and psychosocial well-being. Put in this way, it may seem as if the safety and efficacy of each type of ART technique can be easily determined. However, there are several issues that confound this seemingly straightforward process
An axiomatic approach to metareasoning on nominal algebras in HOAS
We present a logical framework # for reasoning on a very general class of languages featuring binding operators, called nominal algebras, presented in higher-order abstract syntax (HOAS). # is based on an axiomatic syntactic standpoint and it consists of a simple types theory a la Church extended with a set of axioms called the Theory of Contexts, recursion operators and induction principles. This framework is rather expressive and, most notably, the axioms of the Theory of Contexts allow for a smooth reasoning of schemata in HOAS. An advantage of this framework is that it requires a very low mathematical and logical overhead. Some case studies and comparison with related work are briefly discussed