200 research outputs found

    eIF2alpha Confers Cellular Tolerance to S. aureus alpha-Toxin

    Get PDF
    We report on the role of conserved stress-response pathways for cellular tolerance to a pore forming toxin. First, we observed that small molecular weight inhibitors including of eIF2alpha-phosphatase, jun-N-terminal kinase (JNK), and PI3-kinase sensitized normal mouse embryonal fibroblasts (MEFs) to the small pore forming S. aureus alpha-toxin. Sensitization depended on expression of mADAM10, the murine ortholog of a proposed high-affinity receptor for alpha-toxin in human cells. Similarly, eIF2alpha (S51A/S51A) MEFs, which harbor an Ala knock-in mutation at the regulated Ser51 phosphorylation site of eukaryotic translation initiation factor 2alpha, were hyper-sensitive to alpha-toxin. Inhibition of translation with cycloheximide did not mimic the tolerogenic effect of eIF2alpha-phosphorylation. Notably, eIF2alpha-dependent tolerance of MEFs was toxin-selective, as wild-type MEFs and eIF2alpha (S51A/S51A) MEFs exhibited virtually equal sensitivity to Vibrio cholerae cytolysin. Binding of S. aureus alpha-toxin to eIF2alpha (S51A/S51A) MEFs and toxicity in these cells were enhanced as compared to wild-type cells. This led to the unexpected finding that the mutant cells carried more ADAM10. Because basal phosphorylation of eIF2alpha in MEFs required amino acid deprivation-activated eIF2alpha-kinase 4/GCN2, the data reveal that basal activity of this kinase mediates tolerance of MEFs to alpha-toxin. Further, they suggest that modulation of ADAM10 is involved. During infection, bacterial growth may cause nutrient shortage in tissues, which might activate this response. Tolerance to alpha-toxin was robust in macrophages and did not depend on GCN2. However, JNKs appeared to play a role, suggesting differential cell type and toxin selectivity of tolerogenic stress responses. Understanding their function or failure will be important to comprehend anti-bacterial immune responses

    Leptin Does Not Directly Affect CNS Serotonin Neurons to Influence Appetite

    Get PDF
    Serotonin (5-HT) and leptin play important roles in the modulation of energy balance. Here we investigated mechanisms by which leptin might interact with CNS 5-HT pathways to influence appetite. Although some leptin receptor (LepRb) neurons lie close to 5-HT neurons in the dorsal raphe (DR), 5-HT neurons do not express LepRb. Indeed, while leptin hyperpolarizes some non-5-HT DR neurons, leptin does not alter the activity of DR 5-HT neurons. Furthermore, 5-HT depletion does not impair the anorectic effects of leptin. The serotonin transporter-cre allele (Sert(cre)) is expressed in 5-HT (and developmentally in some non-5-HT) neurons. While Sert(cre) promotes LepRb excision in a few LepRb neurons in the hypothalamus, it is not active in DR LepRb neurons, and neuron-specific Sert(cre)-mediated LepRb inactivation in mice does not alter body weight or adiposity. Thus, leptin does not directly influence 5-HT neurons and does not meaningfully modulate important appetite-related determinants via 5-HT neuron function

    A conscious mouse model of gastric ileus using clinically relevant endpoints

    Get PDF
    BACKGROUND: Gastric ileus is an unsolved clinical problem and current treatment is limited to supportive measures. Models of ileus using anesthetized animals, muscle strips or isolated smooth muscle cells do not adequately reproduce the clinical situation. Thus, previous studies using these techniques have not led to a clear understanding of the pathophysiology of ileus. The feasibility of using food intake and fecal output as simple, clinically relevant endpoints for monitoring ileus in a conscious mouse model was evaluated by assessing the severity and time course of various insults known to cause ileus. METHODS: Delayed food intake and fecal output associated with ileus was monitored after intraperitoneal injection of endotoxin, laparotomy with bowel manipulation, thermal injury or cerulein induced acute pancreatitis. The correlation of decreased food intake after endotoxin injection with gastric ileus was validated by measuring gastric emptying. The effect of endotoxin on general activity level and feeding behavior was also determined. Small bowel transit was measured using a phenol red marker. RESULTS: Each insult resulted in a transient and comparable decrease in food intake and fecal output consistent with the clinical picture of ileus. The endpoints were highly sensitive to small changes in low doses of endotoxin, the extent of bowel manipulation, and cerulein dose. The delay in food intake directly correlated with delayed gastric emptying. Changes in general activity and feeding behavior were insufficient to explain decreased food intake. Intestinal transit remained unchanged at the times measured. CONCLUSION: Food intake and fecal output are sensitive markers of gastric dysfunction in four experimental models of ileus. In the mouse, delayed gastric emptying appears to be the major cause of the anorexic effect associated with ileus. Gastric dysfunction is more important than small bowel dysfunction in this model. Recovery of stomach function appears to be simultaneous to colonic recovery

    Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology

    Get PDF
    A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, 13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype–phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential
    • …
    corecore