216 research outputs found

    A promoter region that controls basal and elicitor-inducible expression levels of the NADPH: cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1

    Get PDF
    NADPH:cytochrome P450 reductase (CPR) is essential for the activation of cytochrome P450 enzymes, which are involved in a wide variety of metabolic pathways in plants, including those related to defence responses. In the subtropical plant Catharanthus roseus several cytochrome P450 enzymes operate in the biosynthesis of defence-related terpenoid indole alkaloids (TIAs). In agreement with the importance of CPR in defence, Cpr mRNA levels in C. roseus were found to be enhanced by fungal elicitor preparations that also induce TIA biosynthesis and P450 gene expression. Here we describe the isolation of a C. roseus genomic DNA clone covering the 5¢ part of the Cpr gene and 1.6-kb of upstream sequences. Mapping of the transcription start site showed the untranslated leader sequence is approximately 280 bp long. To study the control of gene expression by the Cpr promoter, transcriptional fusions between Cpr promoter fragments and the gusA reporter gene were generated and their expression was analyzed in stably transformed tobacco plants. The Cpr promoter fragment extending from )1510 to )8, with respect to the ATG start codon, conferred basal and elicitor-inducible expression on the gusA reporter gene, strongly indicating that the Cpr gene of C. roseus is indeed controlled by this promoter region. Progressive deletion from the 5¢ end of the promoter to position )632 had little e ect on gusA expression. However, deletion to position )366 resulted in a complete loss of basal activity and largely eliminated elicitor-induced expression, indicating that the region from )632 to )366 contains the main transcription-enhancing cis-regulatory sequences. Electrophoretic mobility shift assays with tobacco nuclear extracts showed that binding sites for nuclear factor GT-1 are redundant in the Cpr promoter, but absent from the downstream part of the leader sequence. The presence of strong GT-1 binding sites in the main enhancer region ()632 to )366), is suggestive of a functional role for this factor in basal expression and elicitor responsiveness of the Cpr promoter.info:eu-repo/semantics/publishedVersio

    A promoter region that controls basal and elicitor-inducible expression levels of the NADPH: cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1

    Get PDF
    NADPH:cytochrome P450 reductase (CPR) is essential for the activation of cytochrome P450 enzymes, which are involved in a wide variety of metabolic pathways in plants, including those related to defence responses. In the subtropical plant Catharanthus roseus several cytochrome P450 enzymes operate in the biosynthesis of defence-related terpenoid indole alkaloids (TIAs). In agreement with the importance of CPR in defence, Cpr mRNA levels in C. roseus were found to be enhanced by fungal elicitor preparations that also induce TIA biosynthesis and P450 gene expression. Here we describe the isolation of a C. roseus genomic DNA clone covering the 5¢ part of the Cpr gene and 1.6-kb of upstream sequences. Mapping of the transcription start site showed the untranslated leader sequence is approximately 280 bp long. To study the control of gene expression by the Cpr promoter, transcriptional fusions between Cpr promoter fragments and the gusA reporter gene were generated and their expression was analyzed in stably transformed tobacco plants. The Cpr promoter fragment extending from )1510 to )8, with respect to the ATG start codon, conferred basal and elicitor-inducible expression on the gusA reporter gene, strongly indicating that the Cpr gene of C. roseus is indeed controlled by this promoter region. Progressive deletion from the 5¢ end of the promoter to position )632 had little e ect on gusA expression. However, deletion to position )366 resulted in a complete loss of basal activity and largely eliminated elicitor-induced expression, indicating that the region from )632 to )366 contains the main transcription-enhancing cis-regulatory sequences. Electrophoretic mobility shift assays with tobacco nuclear extracts showed that binding sites for nuclear factor GT-1 are redundant in the Cpr promoter, but absent from the downstream part of the leader sequence. The presence of strong GT-1 binding sites in the main enhancer region ()632 to )366), is suggestive of a functional role for this factor in basal expression and elicitor responsiveness of the Cpr promoter.info:eu-repo/semantics/publishedVersio

    Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding

    Get PDF
    A transgenic cell suspension culture of Nicotiana tabacum L. ‘Petit Havana’ SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells.info:eu-repo/semantics/publishedVersio

    Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding

    Get PDF
    A transgenic cell suspension culture of Nicotiana tabacum L. ‘Petit Havana’ SR1 was established expressing tryptophan decarboxylase and strictosidine synthase cDNA clones from Catharanthus roseus (L.) G. Don under the direction of cauliflower mosaic virus 35S promoter and nopaline synthase terminator sequences. During a growth cycle, the transgenic tobacco cells showed relatively constant tryptophan decarboxylase activity and an about two- to sixfold higher strictosidine synthase activity, enzyme activities not detectable in untransformed tobacco cells. The transgenic culture accumulated tryptamine and produced strictosidine upon feeding of secologanin, demonstrating the in vivo functionality of the two transgene-encoded enzymes. The accumulation of strictosidine, which occurred predominantly in the medium, could be enhanced by feeding both secologanin and tryptamine. No strictosidine synthase activity was detected in the medium, indicating the involvement of secologanin uptake and strictosidine release by the cells.info:eu-repo/semantics/publishedVersio

    Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis

    Get PDF
    Plant defense against microbial pathogens depends on the action of several endogenously produced hormones, including jasmonic acid (JA) and ethylene (ET). In defense against necrotrophic pathogens, the JA and ET signaling pathways synergize to activate a specific set of defense genes including PLANT DEFENSIN1.2 (PDF1.2). The APETALA2/Ethylene Response Factor (AP2/ERF)-domain transcription factor ORA59 acts as the integrator of the JA and ET signaling pathways and is the key regulator of JA- and ET-responsive PDF1.2 expression. The present study was aimed at the identification of elements in the PDF1.2 promoter conferring the synergistic response to JA/ET and interacting with ORA59. We show that the PDF1.2 promoter was activated synergistically by JA and the ET-releasing agent ethephon due to the activity of two GCC boxes. ORA59 bound in vitro to these GCC boxes and trans-activated the PDF1.2 promoter in transient assays via these two boxes. Using the chromatin immunoprecipitation technique we were able to show that ORA59 bound the PDF1.2 promoter in vivo. Finally, we show that a tetramer of a single GCC box conferred JA/ethephon-responsive expression, demonstrating that the JA and ET signaling pathways converge to a single type of GCC box. Therefore ORA59 and two functionally equivalent GCC box binding sites form the module that enables the PDF1.2 gene to respond synergistically to simultaneous activation of the JA and ET signaling pathways

    An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    Get PDF
    The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and in cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding strictosidine, in a reaction catalysed by the enzyme strictosidine synthase (STR; E.C. 4.3.3.2). Subsequently, the formation of strictosidine is quantified by high performance liquid chromatography (HPLC). STR was isolated from transgenic Nicotiana tabacum cells expressing a cDNA-derived gene coding for STR from Catharanthus roseus. The high specificity of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this method is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera xylosteum hairy roots were found to contain 1% of secologanin on a dry weight basis. # 1998 John Wiley & Sons, Ltd.info:eu-repo/semantics/publishedVersio
    corecore