2,664 research outputs found

    Epidemiology of Type 2 Diabetes and Cardiovascular Disease: Translation From Population to Prevention: The Kelly West Award Lecture 2009

    Get PDF
    In the book Epidemiology of Diabetes and Its Vascular Lesions (1978), Kelly West summarized extant knowledge of the distribution and causes of diabetes. The 30 years of epidemiological research that followed have seen remarkable advances in the understanding of obesity as a risk factor for type 2 diabetes, and diabetes and pre-diabetes as risk factors for cardiovascular disease. Increasingly detailed understanding of these relationships has, unfortunately, been accompanied by an alarming increase in the prevalence of obesity, diabetes, and cardiovascular disease. West recognized that pre-diabetes is recognizable as what we now call metabolic syndrome. He predicted that novel insight into diabetes pathogenesis would come from biochemical and genetic epidemiology studies. He predicted that type 2 diabetes could be prevented by healthy lifestyle change. The challenge now is for us to translate these insights into effective strategies for the prevention of the modern epidemic of diabetes and vascular disease

    Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.

    Get PDF
    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources

    Imaging Fourier transform spectrometers for environmental sensing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77073/1/AIAA-1998-291-523.pd
    • ā€¦
    corecore