2,320 research outputs found

    Large-eddy simulation of large-scale structures in long channel flow

    Get PDF
    We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Re_τ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity

    Linear discriminant analysis with misallocation in training samples

    Get PDF
    Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule

    A tale of two airfoils: resolvent-based modelling of an oscillator vs. an amplifier from an experimental mean

    Get PDF
    The flows around a NACA 0018 airfoil at a Reynolds number of 10250 and angles of attack of alpha = 0 (A0) and alpha = 10 (A10) are modelled using resolvent analysis and limited experimental measurements obtained from particle image velocimetry. The experimental mean velocity profiles are data-assimilated so that they are solutions of the incompressible Reynolds-averaged Navier-Stokes equations forced by Reynolds stress terms which are derived from experimental data. Spectral proper orthogonal decompositions (SPOD) of the velocity fluctuations and nonlinear forcing find low-rank behaviour at the shedding frequency and its higher harmonics for the A0 case. In the A10 case, low-rank behaviour is observed for the velocity fluctuations in two bands of frequencies. Resolvent analysis of the data-assimilated means identifies low-rank behaviour only in the vicinity of the shedding frequency for A0 and none of its harmonics. The resolvent operator for the A10 case, on the other hand, identifies two linear mechanisms whose frequencies are a close match with those identified by SPOD. It is also shown that the second linear mechanism, corresponding to the Kelvin-Helmholtz instability in the shear layer, cannot be identified just by considering the time-averaged experimental measurements as a mean flow due to the fact that experimental data are missing near the leading edge. The A0 case is classified as an oscillator where the flow is organised around an intrinsic instability while the A10 case behaves like an amplifier whose forcing is unstructured. For both cases, resolvent modes resemble those from SPOD when the operator is low-rank. To model the higher harmonics where this is not the case, we add parasitic resolvent modes, as opposed to classical resolvent modes which are the most amplified, by approximating the nonlinear forcing from limited triadic interactions of known resolvent modes.Comment: 32 pages, 23 figure

    A new friction factor relationship for fully developed pipe flow

    Get PDF
    The friction factor relationship for high-Reynolds-number fully developed turbulent pipe flow is investigated using two sets of data from the Princeton Superpipe in the range 31×10^3 ≤ ReD ≤ 35×10^6. The constants of Prandtl’s ‘universal’ friction factor relationship are shown to be accurate over only a limited Reynolds-number range and unsuitable for extrapolation to high Reynolds numbers. New constants, based on a logarithmic overlap in the mean velocity, are found to represent the high-Reynolds-number data to within 0.5%, and yield a value for the von Kármán constant that is consistent with the mean velocity profiles themselves. The use of a generalized logarithmic law in the mean velocity is also examined. A general friction factor relationship is proposed that predicts all the data to within 1.4% and agrees with the Blasius relationship for low Reynolds numbers to within 2.0%

    Water quality map of Saginaw Bay from computer processing of LANDSAT-2 data

    Get PDF
    There are no author-identified significant results in this report

    Static pressure correction in high Reynolds number fully developed turbulent pipe flow

    Get PDF
    Measurements are reported of the error in wall static pressure reading due to the finite size of the pressure tapping. The experiments were performed in incompressible turbulent pipe flow over a wide range of Reynolds numbers, and the results indicate that the correction term (as a fraction of the wall stress) continues to increase as the hole Reynolds number d+=uτd/νd^+=u_\tau d/\nu increases, contrary to previous studies. For small holes relative to the pipe diameter the results follow a single curve, but for larger holes the data diverge from this universal behaviour at a point that depends on the ratio of the hole diameter to the pipe diameter

    New perspectives on the impulsive roughness-perturbation of a turbulent boundary layer

    Get PDF
    The zero-pressure-gradient turbulent boundary layer over a flat plate was perturbed by a short strip of two-dimensional roughness elements, and the downstream response of the flow field was interrogated by hot-wire anemometry and particle image velocimetry. Two internal layers, marking the two transitions between rough and smooth boundary conditions, are shown to represent the edges of a ‘stress bore’ in the flow field. New scalings, based on the mean velocity gradient and the third moment of the streamwise fluctuating velocity component, are used to identify this ‘stress bore’ as the region of influence of the roughness impulse. Spectral composite maps reveal the redistribution of spectral energy by the impulsive perturbation – in particular, the region of the near-wall peak was reached by use of a single hot wire in order to identify the significant changes to the near-wall cycle. In addition, analysis of the distribution of vortex cores shows a distinct structural change in the flow associated with the perturbation. A short spatially impulsive patch of roughness is shown to provide a vehicle for modifying a large portion of the downstream flow field in a controlled and persistent way

    Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow

    Get PDF
    Spectra of the streamwise velocity component in fully developed turbulent pipe flow are presented for Reynolds numbers up to 5.7×10^6. Even at the highest Reynolds number, streamwise velocity spectra exhibit incomplete similarity only: while spectra collapse with both classical inner and outer scaling for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete, and a region varying with the inverse of the streamwise wave number, k1, is not expected, and any apparent k1-1 range does not attract any special significance and does not involve a universal constant. Reasons for this are suggested
    corecore