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1. INTRODUCTION

In discriminant analysis, often a two-step procedure is followed; first,

training samples are obtained to set up a discriminant rule and then, indiv-

iduals are classified using the sample-based rule. However, if the criterion

for assigning the training samples to their true classes is imperfect, some

training samples may be misallocated. For example, this arises in discrimi-

nation of crops in an area using spectral data acquired from a satellite.

The scene image of the area is analyzed to delineate crop features and train-

ing samples are assigned crop labels based on visual interpretation of their

spectral observations. This can lead to mislabeling of crops for some training

samples and thus, may adversely affect the performance of a discriminant rule.

Presently we study the linear discriminant analysis in the presence of mis-

allocation in a training set. Suppose that individuals come from one of the

two classes Cl and C2. A p-dimensional random vector X is measured on each

individual. It is assumed that X has the multivariate normal distribution with

mean ei and covariance matrix E for Ci, 1=1,2. In a training sample of n

individuals, suppose n1 are allocated into Cl and n2-n-n1 into C2. If ai

is the fraction of training samples from Ci that are misallocated, 1=1,2, the

two samples of sizes n 1 and n 2 represent mixed classes, say Ci and C2,

instead of the original classes C 1 and C2 . Let r*, and V and S* denote

the sample means and the pooled sample covariance matrix, respectively. Then

a random observation X can be classified on the basis of linear discriminant

function (Anderson, 1958) given by

^(X)
	

0 0 + 0 X	 (1.1)
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where

Bo = lo9(n l/n 2) - ( 1/2)(^ - Xi)- S*1 (	 +	
)

I 
= 

S*-1 11*2 - 11).	 (1.2)

The classification procedure is to regard the observed value, X coming from

C1 or C2 according as the discriminant value, 1Q) c 0 or > 0, respectively.

Then the error rates for the procedure are g-,ien by

R 1 n Prob {a(X) > 0 1 X eC l , ^, . 2* , S*}

R2 n Prob {a(X) c 0 1 X cC2 , ^, 'r	 S*}	 (1.3)

and its average error rate is given by

R : w 1 R1 + *2R 2	 (1.4)

where m1 and w2 are the probabilities associated with C1 and C2.

Assuming that training samples are randomly misallocated, Lachenbruch (1966)

and McLachlan (1972) studied R 1 and R2 for their expected values and variances.

However, a random misallocation model is unrealistic, particularly if the ob-

servation X is itself used in determining the allocation. Lachenbruch (1974)

suggested a nin-random allocation model with two variations to it. His cri-

terion for allocation was based on the distances of an observation from the

class means. Presently, we propose an allocation model in which misallocation

of a sample depends upon its observation. The random and non-random mis-

allocation models of Lachenbruch become special cases of this new model

(Section 2).
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For the discriminant function in (1.1), we give the asymptotic distribution of

the discriminant boundary and obtain the asymptotic mean and variance of each

of the error rates, R1, R2, and R (Section 3). We take the same approach

that was used by Efron 975) and extend his normal discrimination results

to the case of misallocated training samples. The present study can also be

viewed as an extension of Sayre (1980) who gives the asymptotic distribution

of R assuming correct allocation for the training samples; although we here

do not explicity give the distribution. McLachlan (1972) has given the asymp-

totic means and variances of the error rates for random misallocation, but his

derivation is limited to Only one of the two misallocation rates being non-zero.

Lachenbruch (1966, 1974) investigated the means and variances of R1 and R2

for his models using simulations. Michalek and Tripathi (1980) discussed the

problem for random misallocation, but they studied the discrimination between

the mixed classes and not between the original classes. Given in Sections 4

and 5 are certain numerical results showing the adverse effect of misallocation

on the linear discriminant boundary and the associated error rates.

2. MISALLOCATION MODELS

Suppose A2_(01 -42)' E -1 (u1-u2). By means of linear transformations,

one can reduce the class structures in the canonical form (Efron 1975), where

-0/2	 [6/2
ul	

0	
u2=	

O	
E	 I (2.1)

so that the class means ^1 and 82 are aliened along the xl-axis. Suppose

allocation of an individual is made using its observation X. It is desirable



q
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to consider an allocation so that chance of misallocation for an individual

increases as its observation deviates further away from the mean of its true

class in the direction of the mean of the other class. So lot the probability

of misallocation of an individual from Ci into C3-i be gi (z), i = 1,2, where

g i(z) is a monotone increasing function and 924) is a monotone decreasing

function with z to be along the xl-axis. Suppose fi(z) is the frequency func-

tion of the first component of random vector X for Ci and

w i = J" f i (z)dz, i = 1,2.

Define the misallocation rate ai by

ai	 ( 1/*i) J" 9 i (z)f i (z)dz, i = 1,2.	 (2.2)

Given al and 02, the functions gl and 92 can be specified differently.

The ransom misallocation model (Lachenbruch 1966, McLachlan 1972, Michalek

and Tripathi 1980) corresponds to the iniform case given by, and to be called

model (a):

(a) Random Misallocation

For X e Ci, let

9i( z ) = ai, i = 1,2.
	

(2.3)

Another model, to be called model (b), is obtained by specifying gl and 92

as follows:

(b) "Truncated" Model:

For X c C1, let

fo ,zcal
91(z) ' 1

^u ,z>al
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and for X e C2, let

92(z)

l u ,z4 a2
' l0 , z > a2

where ai is determined from (2.2). After solving it, we obtain

al . -(0/2 ) + Z 1-0 /u
1

a2=e/2+Za/u
2

(2.4)

where ZY denotes the Y -percentage point of the standard normal distribution.

If we assume u=1 and a l ua 2=0, then one obtains the complete separation model

of lachenbruch (1974). His other non-random model can be obtained by taking

the ai as percentage points of the chi square distribution with p degrees of

freedom.

Though models (a) and (b) are easy to implement and hence, these are appealing,

they may not be always suitable. Instead, it may perh&ps be more appropriate

to let the probability of misallocation increase as the observed value deviates

away from the mean of its true class. One such model can be defined as follows:

(c) Exponential Model:

For X e C1, let

1 0	 z < -e/2

91(z)
	

11-exp(-k1[z+,&/2]2/2),	 z > -e/2
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and for X c C2, let

1-exp(-k 2[z-e/232/2),	 z < e/2

92(z ) -

0	 z > a/2	 (2.5)

where ki is determined from (2.2). It easily follows that

ki - (1-2a i ) -2 - 1.

In practice, the misallocation rates ai will be subject to sampling vari-

ation. Hence, these rates are being considered as random variables.

In Appendix A, we derive the mean vec'^rs and the covariance matrices of the

mixture distributions of C; and C2, and in •section 3, we give the dis-

criminant analysis for arbitrary functions gl and 92 as defined earlier.

For numerical computations presented in sections 4 and 5, we consider the

special cases, models (a), (b) and (c), and compare the performances of the

discriminant rule associated with the discriminant function in (1.1) for

these models.

3. DISCRIMINANT BOUNDARY AND ERROR RATES

When the parameters are ::mown, the discriminant rule is: classify X into

C1 if a(X) < 0 and into C2, otherwise, where

a(X) - @o + g' X	 (3.1)

Ro ' log(*1/*2) - (1121 " 11 11 )/2 ( 1 + C)

0 1 - ( 112 1 - 1111)/(1 + E)
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Bj0 , f =2,...,P

and *i, *2 , IA 11 , v21 and 4 as defined in Appendix A.

As discussed by Efron (1975), the "Optimum" boundary, X(X)=O, is the

(p-1)-dimensional plane orthogonal to x1 -axis and intersecting it at

T = -00/81.	 (3.2)

For large sample size n, the sample-based boundary, k(X) =0, is the plane

intersecting the xl-axis at T = T+dT with normal vector at an angle do

from the xl-axis, where dT and de represent small deviations from 0. With

no loss of generality, suppose 00. Then the distances of ul and 22

from the optimum boundary are

D1 = 0/2 + T,	 DZ = d/2 - T,	 (3.3)

and those from the sample-based boundary are

dl = (Dl+dT) cos(de), d2=(D2-dT) cos(de). 	 (3.4)

Refer to Efron(1975) for a pictorial description of the two-discriminant

boundaries and other related details.

The error rates can now be written in terms of these distances:

Ri = •(-D 1 ) , Rz = m(-02 )	 (3.5)
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for the "optimum" boundary, and

R1-4(-d),	 R2'e(-d2)
	

(3.6)

J. the sample-based boundary, where • stands for the standard normal cdf.

Let + denote the density function of standard normal. Then, ignoring higher

than second order differential terms, we have (Efron, 1975)

R 1 - R? - o(D1)dt + ( 01/2) !(D1)[(dy)2 + (de)2]

R 2 - R? + +(D2 )dt + ( D2/2 ) +(D2)^(dt)2 + (dc) 2]	 (3.7)

where

dT	 -(doo + td81) /B1 	 •

(dc)2 ' [(d0 2 ) 2 + (d03) 2 + .... + (dOp) 2];81 2	(3.8)

with d0j - (Bj - Bj)	 denoting the error in the estimate Bj,

j - 0,1,2,...,p, given in (1.2). We denote dj(1) -(d81, d6296..,dop)' .

Since n is large, one may assume that 7n(doo, dO M Y has a limiting normal

distribution with mean 0 and covariance matrix V 	 In Appendix B, we obtain

Vi and write it in the form,

000 001 0.

001 all

0	 0	 0221

with quantities coo, c01, 011 and (22 expressed in terms of basic

input parameters, el, N2, al, a2 and 4, among others.
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90	
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It follows from (3.8) that

aT2 ' El(dt)23

(000 + 2Taol + T 2 all)/Bi.

Suppose we define

dmj = d0j /01. J-2,3 . ... p.

Then its variance is

^;Wj2 = 022/0f, J=2,390.09p. (3.11)

Next, r(dT, dn)) has a limiting normal distribution with mean 0 and

covariance matrix TV11', where

1 t Q'

	

T	 (1/81)

OOI	 .

The covariance matrix may be written as

T

	

2	 9' 1
0	 aW2I j

where a.2= 022/01•

Since (dc) 2	(dwj)2 and n(dwj ) 2/Gw2 — X j, J=2,3,...,p,

	

n(dE) 2/0W2 	X2_1 . Furthermore, n(dT)2/0 2	 X2+.

(The symbol — should read "asymptotically distributed as".)

r
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From (3.7) and the above dist,i,)utional results, the asymptotic moments of

the error rates can !iow be easily obtained. Since (dT) 2 and (dc) 2 arc

asymptotically uncorrelated and

E[(dT) 2] _ 0 T
2/n, EC(dc) 2] _ (p-1) oW2/A

and

V[(dT) 2] _ 2oT 4/n 2 , VC(dc) 2] _ 2(p-
1)o.e /n 2,

the asymptotic means of R1 and R2, ignoring second and higher order terms,

are given by

ECR1] = RO + (D1/2n) f(D 1) [oT 2 + (P-1)oW21

E[ R2] - Rg + ( D2/ 2n ) #( D2) [0T ? + (p -1)oW2]	 -(3.12)

For the asymptotic second order moments, ignoring third and higher order

terms, we have the variances and covariances of R 1 and R2 as follows:

V[R1] _ (1/n )m 2 ( D1) {o T 2 + (Dj/2n)[ct 4 + (p-1)oW4]}

V[R2] ' ( l in )^ 2 (D2 I {o T I + (Dj/2n)[o T 4 + (p-1)o";4]}

Cov[R 1 , R 21 _ ( 1 /n )#( D1W D2)I-oT 2 + (D1D2/2n)

[aT 4 + (9-1)aW4]}, (3.13)

where oT 2 and 
ow  are functions of elements of so, 0 1 and rd.

Clearly, E[R i ] approaches R?, 1=1,2, as n becomes infinite.

For the average error rate, we have

E[R] - RD + (1/2n) [r 1D 1 ^(D 1 ) + A 2D2 4(D2)] [aT 2 + (P-1) ow 21

V[R] - *12 V[R 1 ] + *22 V[R 2] + 2 s 1 T 2 Cov(R 1 , R2),	 (3.14)

w!►?re V[R 1 ], V[R2] and Cov[R1, R 2 3 are as given in (3.13).



.-I :	
OM MiAL PACE IS

11
	

OF POOR QUALITY

4. NUMERICAL RESULTS

Computations were made to evaluate the asymptotic covariance matrix Ys

for following cases of input parameters:

1 = .5, .7

A = 2, 4

a1 = 0, .1, .2, .3 9 .4 and a2 = 0

This was done for all three misallocation models discussed in section 2.

We specified u =.5 in model (b), equation (2.4), so that there is a fifty-

fifty chance of misallocation for an observation that falls beyond a thres-

hold point. Based on these computations, we obtained T, aT2, OW  and the

means and variances of the error rates given in equations (3.12), (3.13) and

(3.14). Table 1 lists the values of T, a T 
2 and a.2. From these numerical

results, we find that a T 2 increases as al increases from 0 to .4, except

there is a slight decrease when a =2, xl=.7 and model (c) for misallocation.

The results for a.2 are mixed; it is constant in the case of misa Vocation

mooel (a) and it decreases as al increases for models (b) and (c), provided 6=2.

When a=4, it first decreases and then increases.

The values of QT 2 i,nd a.2 are considerably higher for model (a) than for

other two models. This is an expected result because the boundary is subject

to higher var4atility under random mixing in training samples. Next, the

rate of increase in a T 2 as a function of al is higher for a=4 than for

&=2. Again, this is expected since a higher rate of misallocation in

training samples will lead to a larger change in the variance of a mixture

distribution when C1 and C2 are more sPaarated and, hence, causing a large

2increase in aT.

c
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1. Values c. z and Variances a.2 and aw2 Associated With the SWle4ased Boundary

_ * ' •
(al , 02 ) 141salloc

(a )

a	 on 140del

(b) (c)
-	 sa

(a)
ocamodel

(b) (c)

i	 e2

(0, 0) 0 0 0 .424 .424 .424

-.221 -.192 -.191 .214 .092 .089

z (.2, 0) -.491 -.398 -.375 -.074 -.167 -.186

0) -.819 -.649 -0565 -.463 -.443 -.435

4 n(:

3:
-1.218 -1.001 -0776 -.976 -.815 -.681

(0, 0) 1.000 1.000 1.000 1.360 1.360 1.360

(.1,	 0) 2.157 1.1,.6 1.130 1.929 1.308 1.235

2aT (.2,	 0) 4.327 1.541 1.184 3.475 1.717 1.216

(.3,	 0) 8.248 2.473 1.211 7.088 2.542 1.133

(.4,	 0) 145.549 5.373 1.296 15.564 5.178 1.072

(0, 0) 2.000 2.000 2.000 2.190 2.190 2.190

(.1,	 0) 2.000 1.068 1.051 2.190 .845 .824

c 2 (.2,	 0) 2.000 .747 .533 2.190 .488 .286
W

(.3,	 0) 2.000 .644 .248 2.190 .387 .074

(.4,	 0) 2.000 .773 .098 2.190 .515 .005

D4

(0, 0) 0 0 0 .212 .212 .212

(.1,	 0) -.277 -.251 -.257 -.065 -.145 -.147

z (.2,	 0) -.617 -.553 -.535 -.413 -.477 -.493

(.4,	 0) -1.546 -1.398 -1.207 -1.483 -1.373 -1.248

(0,	 0) 1.000 1.000 1.000 1.193 1.193 1.193

(.1,	 0) 2.741 1.497 1.480 2.236 1.751 1.703

ct2 (.2,	 0) 5.821 2.65.3 2.012 4.558 2.756 2.182

(.3,	 0) 10.948 4.976 2.642 9.464 4.765 2.623

(.4,	 0) 19.324 10.391 3.494 18.998 9.885 3.125

(0,	 0) 1.250 1.193 1.193 1.298 1.193 1.193

(.1,	 0) 1.250 .511 .497 1.298 .324 .309

2cW (.2,	 0) 1.250 .266 .122 1.298 .094 .009

(.3,	 0) 1.250 .194 .002 1.298 .044 .077

(.4,	 0) 1.250 .285 .055 1.298 .109 .343
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If we consider the complete separation model, i.e., u=1, or the other non-

random model of Lachenbruch (1974), the mixture distributions will have smaller

variances than the original distributions have. As such, the variance o.2

may be smaller as compared to the case of no misallocation allowed in samples.

In turn, this may lead to smaller values for the expected error rates, as it

was observed by Lachenbruch in his sampling study. His study was, of course,

restricted to the linear discriminant function without the term of

log wi/w2 or its estimate log n 1/n 2 as may be the case with respect

to the discriminant boundary, optimum or sample-based.

In Table 2, we present the asymptotic expected values and standard deviations

(SD) of R 1 , R2, and R corresponding to wl=.5, a=2, p=2 and al and a2

as considered in Table 1. Similar results can be easily computed for the other

cases by making use of the values of T, 0T 2 and a.2 from Table 1. It is seen

that E[Rl] and SD[R1] increase, whereas E[R2] and SD[R2] decrease as al

increases. When ai >0 and a2=0, 11/12 < wl/w2=1 and a1-a2>0

and hence, the discriminant boundary shifts away from u 21 in the direction

of u11 as al increases, causing the error rate to increase for C1 and

to decrease for C2. For the average error rate, E[R] and SD[R] increase as

the misallocation rate al increases. Thus, thire is an adverse effect on

the average error rate R due to misallocation of samples from one class to

another.

In limit, E[R i ]=R?, 1=1, 2, and E[R] nRo as n becomes infinite. The

values of R?, Rg, and R o obtained for n= - are also given in Table

2. The corresponding standard deviations are, of course, zero.
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2. Asymptotic Means and Standard Deviations of RI, R2 and R (tls.5, a-2, p•2)

n=IOC n' •
(al 02)

(a )

Misallocation

(b)

Model
(c) (a)

mlsa-"Ocation

(b) (c )

(0, 0) .162 .162 .162 .159 .159 .159

 6) .223 .212 .212 .218 .210 .209

E[RI] 2, 0

1 : 1,
.311 .276 .268 .305 .273 .266

(.3,	 0) .432 .365 .333 .428 .363 .332

(.4,	 0) .594 .500 .412 .586 .500 .411

(0,	 0) .162 .162 .162 .159 .159 .159

(.1,	 0) .116 .119 .119 .111 .117 .117

E[R2] (.2,	 0) .074 .084 .086 .068 .081 .085

(.3,	 0) .042 .052 .060 .034 .050 .059

(.4,	 0) .020 .026 .039 .013 .023 .038

(0,	 0) .162 .162 .162 .159 .159 .159

(.1,	 0) .169 .166 .166 .165 .163 .163

E[R] (.2,	 0) .193 .180 .177 .187 .177 .175

(.3,	 0) .237 .208 .197 .231 .206 .195

(.4,	 0) .307 .263 .225 .300 .262 .225

(0,	 0) .025 .025 .025

(.1,	 0) .044 .031 .031

SD[RI] (.2,	 0) .073 .041 .036

(.3,	 0) .113 .059 .040

(.4,	 0) .154 .092 .044

(0,	 0) .025 .025 .025

(.1,	 0) .028 .021 .021

SD[R2] (.2,	 0) .028 .019 .017

(.3,	 0) .023 .016 .013

(.4,	 0) .016 .013 .009

(0,	 0) .004 .004 .004

(.1,	 0) .010 .006 .006

SD[R] (.2,	 0) .024 .012 .010

(.3,	 0) .046 .022 .014

(.4,	 0) .070 .040 .017
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5. SMALL SAMPLE RESULTS

Because of complex algebric expressions involved in the evaluation of 1t^,

we conducted a Monte Carlo sampling experiment to check the accuracy of

asymptotic results as well as to study the error rates when the training sample

size is small. Normal random numbers were generated using the technique of

Box and Muller (1958). The simulation study was limited to p=2, o =2, 4,

and n =20. 50, 100. The numbers of training samples from Cl and C2 were taken

to be proportional to their a-priori probabilities. Though there were

many other cases, we have chosen to give here the results for the case of *1=.69,

a1 =.087, a2=.226 (this is equivalent to vi=.7, al=.1 and a2=.2

in terms of mixed classes), 0=2. Table 3 presents the means and standard devia-

tions of R 1 and R2 for n=20, 50, 100 obtained from the sampling experiment

as well as from the theoretical results given in (3.12) and (3.13).

Besides misallocation models (a), (b), and (c), we also consider the case of

no misallocation in training samples, i.e., 01=a2=0. This is listed as model (o)

in Table 3. Based on these and other results, we find a good agreement between

the sampling and asymptotic results. When n=100, the two sets of values of

1 ], E[R 2], SD[R 1] and SD[R2] agree at least up to second decimal place.

!over, the agreement holds quite well even for small sample size of n=20.

xnparison between the results for model (o) and of other three models shows

t misallocations under models (b) and (c) lead to about the same results

t are obtained with no misallocation in training samples. The actual error rates

considerably biased and have much larger variances with random misallocation.
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3. The Means and Standard Deviations of R 1 and R2

(*1-.69, a1=.087 02=.226, 0-2, p-2)

Sampling
NO

Asymptotic

Misal lo-
NO

Misallo-
Parameter Misallocation Model cation Misallocation MOPI cation

(a ) "	(c) -737- a	 l^T (T

i	 n=100

E[R1] .044 .081 .090 .078 .046 .082 .086 .081

E[R2] .434 .286 .263 .291 .416 .280 .268 .286

SD[R1] .023 .021 .022 .017 .027 .021 .019 .017

SD[R2] .118 .048 .047 .042 .117 .047 .040 .040

(ii) n-50

E[R1] .057 .085 .087 .084 .055 .084 .088 .085

E[R2] .423 .291 .276 .289 .421 .282 .269 .289

SD[R1] .036 .029 .025 .025 .040 .030 .027 .025

SD[R2] .143 .072 .051 .054 .166 .067 .057 .056

J;ii) n=20

E[R 1 ] .083 .095 .096 .089 .079 .091 .094 .096

E[R2] .482 .323 .295 .323 .435 .289 .275 .299

SD(R1] .112 .060 .043 .044 .074 .049 .044 .042

SD[R2] .237 .137 .115 .101 .264 .106 .090 .090
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So, if an allocation procedure for training samples 1s formulated based on the

concept underlying models (b) and (c), the effect of misallocation on the

linear discriminant analysis for two classes can be minimized.

6. CONCLUDING REMARKS

In practice, t*=log *1J,r2 or its estimate, as may be the case, is not in-

cluded in the discriminant boundary. This leads to what is sometimes referred

to as the Fisher classification rule. Otherwise, it may be called the Bayes

classification rule. To study the difference in the error rates caused by

the exclusion of c*=log n1/n2 from the discriminant function as given in (1.1),

we obtained the means and standard deviations of R1 and R2 for each rule. The

results are presented in Table 4 for tree case of *1-.69, a1-.081, 12=.226

and n=100. Results are also given for the case of *1=.69, 11=0012-0.

Since simulation and asymptotic results are almost same when n=100, either of

two sets of results can be considered. We have listed in Table 4 the results

obtained by the Monte Carlo method.

A comparison between the results of misallocation models (a), (b), (c), and

those of no misallocation model (o) shows that the means and standard deviations

of R1 and R 2 , and hence, of R. are less affected due to misallocation in the case

of Fisher rule than for the Bayes rule, particularly when misallocation is

random. This difference is more in the case of a-4. Since *1-.7, and

x 1 -.69, 'Xi/*2 is approximately equal to A 1 /^ 2. So the ratio n1/n2

can be considered an equally good estimate of x02, and thus, hardly intro-

duces any additional shift in the discriminant boundary, otherwise obtained

from the correctly allocated samples. However, when the two ratios, A1/w2
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-p. me Weans ana atenaara ueviazions of R1 and R2 for Fisher and Sayes Classi-
fication Rules

(v1-.69. a1-.087. *2=.226 * p-2. n-100)

Fisher Ba es

Misallo- Misalio-
ParaMeter Misallocation Model cation Misallocation Model cation

a c
(0) (a) (b) (C)

(,o)

i	 en2 g

E[R 1 ] .189 .150 .147 .158 .044 .081 .090 .078

E[R2] .148 .175 .179 .166 .434 .286 .267 .291

SO[R1] .034 .023 .024 .027 .023 .021 .022 .017

SD[R2] .031 .026 .028 .027 .118 .048 .047 .042

ii A-4

E[R1] .039 .028 .026 .024 .007 .010 .011 .015

E[RJ .019 .023 .025 .024 .112 .061 .057 .038

SD[R1] .015 .008 .008 .006 .006 .005 .005 .004

SD[R2] .008 .007 .008 .006 .066 .021 .020 .011



19

and T1/w2 are not the sank, the shift due to the inclusion of log n1/n2

in the discriminant function may became considerable and hence, it may cause

higher bias as well as higher variance for an error rate. Thus, unless the

allocation procedure for the training samples is objectively formulated as

reflected in our models (b) and (c), the use of Fisher rule may be preferred

over the Bayes rule because of its robustness property.
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APPENDIX A

Mixture Distributions of C l* and C2*

We obtain parameters of the two mixture distributions by expressing these in

terms of kl , k29 E, al and a2. First we obtain these parameters by consider-

ing the orginal class structure and then give these parameters for the case of

canonical form.

Without loss of generality, let l
 and k2 be aligned along the x l-axis and the

conditional means in other dimensions, given x l , be

)'i3lx 1 - u ij + Yj (x l - uil). 3 - 2. 3, .... p	 (A-1)

for X e C i , 1-1, 2. Suppose a 2 denotes the common variance of the two

distributions for X 1 , the first component of random vector X. Let ki
and Ei denote the mean vector and covariance matrix for Ci, i - 1, 2. The

frequency function of X l for Ci can be written as

f i (z) - 11 - g i (z)] fi (z) + 93_1 ( z ) f 3-i ( z )	 (A-2)

where gi (z) and f i (z), i = 1, 2, are as defined in section 2.

*
Then the probability associated with C i is

ff*(Z) dz

(A-3)

_ (1 - a i ) 'r i + 
03-i'13-i	

i	 1 9 2

and *1 + ,r2 - 1.

Define

M

mi = * la	 ( z
 a 

uil
)gi(z)fi(z)dz

ii f

Ai
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and
	

(A-4)

1	 z - oil 2
Vi	 a	 (	 ) g i (z)f i (z)dz, 1 - 1, 2.

11

Now the elements of ui, i - 1, 2, are obtained as follows:

For

X11 - —Wzfi(z)dz

*1

it follows from (2.2) and (A-2) to (A-4) that

* 1
11
11 = 1 l ull - A 1a1(ull + mlo) + *2'2(1121 + m2°)

_ l u ll + A 2a2 ( u 21 - u ll ) + ('2a2m2 - Alalml)o'

Similarly

a 2 u21 = r 2u21 - "lal (11 21 - u ll ) - (R2a2m2 - 
Vlalml)o.

For j = 2, 3, ••-, p, we have

»

n l uij	 uij+z^l - g l (z)]f l (z)dz +fv2jlzg2(z)f2(z)dz.
-w 

Making substitutions from (A-1) and simplifying it, we get

Ai u11 = ,^1 111j + A 2a2 (0 2j - u lj ) + 7j("2a2m2 - 7rlmlml)o.

Similarly,

* t

^2u2j = ,r
2 u2j - R 1 a1 (u 2j - 11 1j ) - Yj (tr 2 a2m2 - Alalml)a.
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Let

61 n u 2i -u li.J=1, 2,....P

t = *2n2m2 - slalml	 (A-5)

a1 = * 2a2 /*i and a2 = e1a1 /*2.

Then

u	 = u 1^ + 
al 6 j + Y it °/* 1

IA	 = N 2^ - a2 6^ - 'f i t a /*2	 (A-6)
21

=1 31 .... P

where Y 1 - I. Another form of (A-6) that will be used in the derivation of

covariance matrices E1 and E2 is:

v *	 v	 - ^1 - al) 6i + 'fit CA
l

u	 ' u 1j + (1 - a2) 6^ - Yet a /W2.

Next, the covariance matrix for C1'

Ei	 E X[(X - J► 1 )(X - ul)^7
N

can be written as

W
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*1 1 =	 EA +zCQ - k*)Q - kl)"Iz]fi(z)dz

I z + tk ll z - kl)(kl'z - kl)^] [ I  - 91(z)]fl(z)dz

M

+ 	 [IZ I z + (k2 1z - k1)(k21z - 21) 10]9 2 (z) f 2 (z)dz	 (A-8)

where k11z and 111z are the conditional mean vector and covariance matrix of I

given z. This easily follows from the conditional expectation argument. The

elements of k iiz , i = 1, 2, are given in (A-1) with x l replaced by z. Letting

* i to	 LXlzfi (z)dz
N

-M

* i ai z o 	 EX+zgi (z)f i (z)dz
N

and making substitutions from (A-1), (A-6) and (A-7) in (A-8), it can be shown

that

E1 = E^ + all - al) dd^ + (* 1 + Xl)
	
02 /it

(A-9)
+ *i (6 r +Z6 )°/*1

where

Xl = * l (tl*1) 2 - *1a11V1 + ( t l l 1* ) 2 - 2 ml(t l* 1)]

+ x 2a2 [V2 + (t/w1) 2 - 2 ml(t/*1)J

^l = ai[(1 - al) t + * la lm l] + (1 - a l)[-a lt + *lalml],
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•
Similarily, the covariance matrix t 2 can be obtained as

E2 = E0 + a 2 ( 1 - a 2 ) * + (* 2 + X 2h a2 2

+,^2(6Y + Ya 
)Q/"2^^

where

OF P^"

(A-10)

X 2 - * 2 (tf* 2)2 - w e2 [V 2 
+ (t/*2) 2 + 2 m2(t/*2)]

+ w la l [V1 + (t/*2) 2 + 2 ml (L/v2)3

*2 = a2[ ( 1 - a 2 ) t - * 2r ind - 0 - a2) Ca *  + vlalml],

In the discriminant function, we use the pooled covariance matrix which is an

estimate of the weighted covariance matrix, E * - * *1E,1 +1 2r 
2 . 

which is given by

*
E _ E + nd6^ + XYY a 2 + * (dx + 7a.

	
(A-11)

where

*	 Or	 Or	 *n = a 1 (i - a 1 ) x l + 0 2 (1 - 
a 2 ) *2

X - X l + X2

* - *1 + 41 2-

with d, t and a* 's are as defined in (A-5). In obtaining (A•11), we have made

use of the fact that E + Y Y a 2 = E .

In the case of canonical form, the mean vectors for Ci, i = 1, 2, and the

weighted covariance matrix are

M;
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kl = [-(1 - 2 al)(e/2) + t/"1l el

k2	 [(1 - 2 a2)(e/2) - t/* 2 3 el
f

I+Eelll

where

el = (1, 0 9 ..., 0)

E =ne 2 +X +2a *.

These expressio+is are obtained from (A-6) and (A-11) by recognizing that

6 1 = As y l = 1 and a2 = 1, E = I, and 6j = 0 and y  = 0, j = 2 9 3 9 •••, p.
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APPENDIX B

Derivation of -

OR	 , r" Jo

CW BOOR QUAU"

Let 0 0) n xa and a (2) - (°22,°23, 0009 app ), where a22' a23 9 0.00 app are the

elements of the upper triangular matrix of I with its first row excluded.
Suppose a*(I) is the first row of L*-I and a*(2) is the vector of elements of

the upper triangular matrix, less *(I) of L*-I . In the determination of

there is no need to consider a (2) and 0*(2) ; e.g., refer to Lemma 2 in Efron

	

*	 * *

	

(1975). Suppose C n log Y' 21
 C	 log 

* I
/v 2 , and

(C. kl . k2 1, 0(1))

a	 (al9 42 9 a 1M 1 9 a2m2)

(B-1)
e

^	 a

and

Then by the 6-method (Rao, 1973), we have

a ^	 ae	 ae	 a^
Vk 

s (ae )(^) 
v. (^-) 

( ae )	
(B-3)

e

where

Ve	 V
M

n

^ V9 a Va
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The elements of	 can be obtained by evaluating the asymptotic variances for

the maxiimim likelihood estimates of 1. Restricting ourselves to the case of

canonical form, we have the following asymptotic variances of k i and o(1),

n V[k i ] n * I, i n 1, 2
1

n V^o (1) ] I + Ell
(0-4)

and their asympotic covariance zero, where E11 ' e lk l' Determination of

V. and V.. would require the misallocation model to be specified. We skip the
a	 8a

specifics and sketch the main steps involved in obtaining these matrices.

Define the random variable y by

0, Sample observation A is correctly allocated
y = 1, Sample observation X is misallocated

If XEC i , then it can be Caen from (2.2) and (A-4) that E[y] - mi,

V [y ] - 'xi ( 1 - m i ), E [yz ] - a i mi and E [(Yz ) 2 ] - E[yz 2] - 002, (say).

So the asymptotic elements of V. are given by
ah

n V[ai ] - V [y ] = ai (1 - ai )

n V[aim i ] - V[yz] - a i v2 - (aimi)2	 (B-5)

n Cov [ai 1a1 i ]	 Cov [y, yz] - mi (1 - ai )mi

i - 1, 2.
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Noting that these variables are independent for C 1 and C2 , all elements of V.

are	 n	 ie eta ed n (B-5). Next, Vww may be derived by the use of 6-method.

Denote 11 n 11(j). Then dS n (*)de and d9 (d,%)^ n de (de ), (,y).
w.

Thus

Vww	 E[d®(da)	 Vw ()
ea	 a	 w.
ww

It can be shown that

8a1 8a1	aa1

'Soil °1m 1 • 	 Su;l n D.	 -To-^1(
m12^ 1)

2a 1m 1	(2)	 "mlm1	
p,	

aalml	
(31

O—,	

n1m1	
u-21	 'To'— • °11(ml m1)

To n 0 ► 	 --1` °1 2m2'	 3u ' ^2(m2 )- 1)

8u2m2 , 0.	
a t2m2	

a2m2(2),	 ^^2"'2 . m (m23) _ m2)
11	 21

where

aim1^)	 zryi(z)®(z)dz

which can be easily evaluated by specifying g i (z), 1 - 1. 2.

(B-6)

(B-7)
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at	 as
Though the matrices * and a^ 

are somewhat complex, their derivations are

as

fairly straight forward. These are as follows:

*2 	 *2

- P21 - u ll ) 21

(B-8)

(x'21 - ull)I

a^0 	vii	 _ u21

ae	 1 
T +E ei	 +Eel

at

at 300)
	0 -i + r-^ E11 I - T + E11

ae

as

as ae

as

TN

(B-9)

where

*
ae

Q	 Q	 Q	 Q

Q	 (1 - a l ) I	 all	 -( t /* i) I

0 a^	 (1 - a 2 )1	 (t/n2)1

ac *(1)	 ao*(1)	 ac*(1)

0
ay 1	ak2	

a ^

with
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20A + ,y E	 ne +	 OF Poolt 400"
a k i	 (i + o) -11 + i +	 (I - E 11)

3u2

a Q * ( 1 ) 
a 

_ 2(l + x + *A)o) E	 _ (i + x + *Ale) ( I - E
ate—(1 + E)	

^li	 1 + C	 -11)

and

0	 0

ae
*

N

3Q

*1*2	 *1*2

+ 
*	 *2 0

 u ll ) e l 	 * (^ - u ii ) ei

1	 l

_	 *	 *2 Q+ u 21 ) el	 -	 (7 - u 21 ) el
2	 W2

A l 	 _	 12

( l + ^) 2	(1 + ^)2

x	 el	 x-e1

ei	 el

	

1	 1

	

x 1	 N2

	

-W	 e 	 -w el

	

A2	
A2

2 
Al	 2 

lF2

	( 1 + E)
2
	 (1 + g)2

x(u21 - uil) e i XN 2*1 - ui l ) el

2L_ = & 2 (1 - 2a 2 - al + a2) +2 	 &t(. W * + (1 - a 2 ) 1 )/,* *

+ t 2 (A*2 _ A 2 )/2 *i^ 22

ate- = 6 2 (1 - ga l + ai - a2 ) + 2 at(a2'r* + ( 1 - ai) * 2 )/^1W 22

+ t 2 (A2 2 -,rig) /W*2, *2.
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