316 research outputs found
Thermal analyses of a materials processing furnace being developed for use with heat pipes
A special materials processing furnace is being developed for the forthcoming Spacelab missions to study the solidification under closely controlled conditions of various sample materials in the absence of gravity. The samples are to be rod shaped and subjected to both heating and cooling simultaneously. The thermal model is based on a developed Thermal Analyzer computer program. The model was developed to be very general to enable the simulation of variations in the furnace design and, hence, serve as an aid in finalizing the design. The thermal model is described and a user's guide given. Some preliminary results obtained in testing the model are also given
User's guide and description of the streamline divergence computer program
The streamline divergence program was developed to demonstrate the capability to trace inviscid surface streamlines and to calculate outflow-corrected laminar and turbulent convective heating rates on surfaces subjected to exhaust plume impingement. The analytical techniques used in formulating this program are discussed. A brief description of the streamline divergence program is given along with a user's guide. The program input and output for a sample case are also presented
Braided structure of fractional -supersymmetry
It is shown that fractional -superspace is isomorphic to the
limit of the braided line. -supersymmetry is
identified as translational invariance along this line. The fractional
translation generator and its associated covariant derivative emerge as the
limits of the left and right derivatives from the calculus
on the braided lineComment: 8 pages, LaTeX, submitted to Proceedings of the 5th Colloquium
`Quantum groups and integrable systems', Prague, June 1996 (to appear in
Czech. J. Phys.
A family of nitrogen enriched metal organic frameworks with CCS potential
Materials with enhanced carbon capture capacities are required to advance post-combustive amelioration methods; these are necessary to reduce atmospheric carbon dioxide emissions and the associated rate of global temperature increase. Current technologies tend to be very energy intensive processes with high levels of waste produced; this work presents three new metal organic framework materials with embedded Lewis base functionalities, imparted by the nitrogen-rich ligand, demonstrating an affinity for carbon dioxide. Thus , we report the synthesis and characterization of a series of metal organic framework materials using a range of metal centers (Co, Ni, and Zn) with the 1,4-bis(pyridin-4-yl)-1,2,4,5-tetrazine organic linker, in the presence of ammonium hexafluorosilicate. Three distinct crystal structures are reported for Zn-pytz(hydro) 1D chains, and Ni-pytz and Co-pytz isostructural 1D Ladders. Co-pytz shows an uptake of 47.53mg CO2/g of sorbent, which equates to 15 wt % based on available nitrogen sites within the structure, demonstrating potential for carbon capture applications
On the evaluation formula for Jack polynomials with prescribed symmetry
The Jack polynomials with prescribed symmetry are obtained from the
nonsymmetric polynomials via the operations of symmetrization,
antisymmetrization and normalization. After dividing out the corresponding
antisymmetric polynomial of smallest degree, a symmetric polynomial results. Of
interest in applications is the value of the latter polynomial when all the
variables are set equal. Dunkl has obtained this evaluation, making use of a
certain skew symmetric operator. We introduce a simpler operator for this
purpose, thereby obtaining a new derivation of the evaluation formula. An
expansion formula of a certain product in terms of Jack polynomials with
prescribed symmetry implied by the evaluation formula is used to derive a
generalization of a constant term identity due to Macdonald, Kadell and Kaneko.
Although we don't give the details in this work, the operator introduced here
can be defined for any reduced crystallographic root system, and used to
provide an evaluation formula for the corresponding Heckman-Opdam polynomials
with prescribed symmetry.Comment: 18 page
Generalized boson algebra and its entangled bipartite coherent states
Starting with a given generalized boson algebra U_(h(1)) known as the
bosonized version of the quantum super-Hopf U_q[osp(1/2)] algebra, we employ
the Hopf duality arguments to provide the dually conjugate function algebra
Fun_(H(1)). Both the Hopf algebras being finitely generated, we produce a
closed form expression of the universal T matrix that caps the duality and
generalizes the familiar exponential map relating a Lie algebra with its
corresponding group. Subsequently, using an inverse Mellin transform approach,
the coherent states of single-node systems subject to the U_(h(1)) symmetry
are found to be complete with a positive-definite integration measure.
Nonclassical coalgebraic structure of the U_(h(1)) algebra is found to
generate naturally entangled coherent states in bipartite composite systems.Comment: 15pages, no figur
Unexpected selective gas adsorption on a 'non-porous' metal organic framework
A metal organic framework Cu(tpt)BF 4· 3 4 H 2O was synthesized as a potential carbon capture material, with the aim being to exploit the Lewis base interaction of the incorporated ligand functionalities with acidic gas. The material displays high thermal stability but an exceptionally low surface area; however, this contrasts starkly with its ability to capture carbon dioxide, demonstrating significant activated diffusion within the framework. The full characterization of the material shows a robust structure, where the CO 2 sorption is 120% greater than current industrial methods using liquid amine solutions; the thermal energy required for sorbent regeneration is reduced by 65%, indicating the true industrial potential of the synthesized material
Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing
Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei
- …