7,502 research outputs found
The first INTEGRAL-OMC catalogue of optically variable sources
The Optical Monitoring Camera (OMC) onboard INTEGRAL provides photometry in
the Johnson V-band. With an aperture of 50 mm and a field of view of 5deg x
5deg, OMC is able to detect optical sources brighter than V~18, from a
previously selected list of potential targets of interest. After more than nine
years of observations, the OMC database contains light curves for more than
70000 sources (with more than 50 photometric points each). The objectives of
this work have been to characterize the potential variability of the objects
monitored by OMC, to identify periodic sources and to compute their periods,
taking advantage of the stability and long monitoring time of the OMC. To
detect potential variability, we have performed a chi-squared test, finding
5263 variable sources out of an initial sample of 6071 objects with good
photometric quality and more than 300 data points each. We have studied the
periodicity of these sources using a method based on the phase dispersion
minimization technique, optimized to handle light curves with very different
shapes.In this first catalogue of variable sources observed by OMC, we provide
for each object the median of the visual magnitude, the magnitude at maximum
and minimum brightness in the light curve during the window of observations,
the period, when found, as well as the complete intrinsic and period-folded
light curves, together with some additional ancillary data.Comment: Accepted by Astronomy & Astrophysics; 13 pages, 16 figures. Figures'
resolution has been degraded to fit astro-ph constraint
Force measurements with optical tweezers inside living cells
The force exerted by optical tweezers can be measured by tracking the momentum changes of the trapping beam, a method which is more general and powerful than traditional calibration techniques as it is based on first principles, but which has not been brought to its full potential yet, probably due to practical difficulties when combined with high-NA optical traps, such as the necessity to capture a large fraction of the scattered light. We show that it is possible to measure forces on arbitrary biological objects inside cells without an in situ calibration, using this approach. The instrument can be calibrated by measuring three scaling parameters that are exclusively determined by the design of the system, thus obtaining a conversion factor from volts to piconewtons that is theoretically independent of the physical properties of the sample and its environment. We prove that this factor keeps valid inside cells as it shows good agreement with other calibration methods developed in recent years for viscoelastic media. Finally, we apply the method to measuring the stall forces of kinesin and dynein in living A549 cells.Publisher PD
Discrepancy of Minimal Riesz Energy Points
We find upper bounds for the spherical cap discrepancy of the set of minimizers of the Riesz s-energy on the sphere Sd. Our results are based on bounds for a Sobolev discrepancy introduced by Thomas Wolff in an unpublished manuscript where estimates for the spherical cap discrepancy of the logarithmic energy minimizers in S2 were obtained. Our result improves previously known bounds for 0 †s< 2 and sâ 1 in S2, where s= 0 is Wolffâs result, and for d- t< s< d with tâ 2.5 when dâ„ 3 and sâ d- 1
The Second INTEGRAL AGN Catalogue
The INTEGRAL mission provides a large data set for studying the hard X-ray
properties of AGN and allows testing of the unified scheme for AGN. We present
analysis of INTEGRAL IBIS/ISGRI, JEM-X, and OMC data for 199 AGN supposedly
detected by INTEGRAL above 20 keV. The data analysed here allow a significant
spectral extraction on 148 objects and an optical variability study of 57 AGN.
The slopes of the hard X-ray spectra of Seyfert 1 and Seyfert~2 galaxies are
found to be consistent within the uncertainties, whereas higher cut-off
energies and lower luminosities are measured for the more absorbed / type 2
AGN. The intermediate Seyfert 1.5 objects exhibit hard X-ray spectra consistent
with those of Seyfert 1. When applying a Compton reflection model, the
underlying continua appear the same in Seyfert 1 and 2 with photon index 2, and
the reflection strength is about R = 1, when assuming different inclination
angles. A significant correlation is found between the hard X-ray and optical
luminosity and the mass of the central black hole in the sense that the more
luminous objects appear to be more massive. There is also a general trend
toward the absorbed sources and type 2 AGN having lower Eddington ratios. The
black holemass appears to form a fundamental plane together with the optical
and X-ray luminosity of the form Lv being proportional to Lx^0.6 M^0.2, similar
to that found between radio luminosity Lr, Lx, and M. The unified model for
Seyfert galaxies seems to hold, showing in hard X-rays that the central engine
is the same in Seyfert 1 and 2, but seen under different inclination angles and
absorption. (Abridged)Comment: 26 pages, 16 figures, accepted for publication in A&A. Corrections by
language editor included in version
The INTEGRAL-OMC Scientific Archive
The Optical Monitoring Camera (OMC) on-board the INTEGRAL satellite has, as
one of its scientific goals, the observation of a large number of variable
sources previously selected. After almost 6 years of operations, OMC has
monitored more than 100 000 sources of scientific interest. In this
contribution we present the OMC Scientific Archive
(http://sdc.laeff.inta.es/omc/) which has been developed to provide the
astronomical community with a quick access to the light curves generated by
this instrument.We describe the main characteristics of this archive, as well
as important aspects for the users: object types, temporal sampling of light
curves and photometric accuracy.Comment: 4 pages, 5 figures. "Highlights of Spanish Astrophysics V"
Proceedings of the VIII Scientific Meeting of the Spanish Astronomical
Society (SEA) held in Santander, July 7-11, 200
Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption
Context. The Lyman alpha emission line of galaxies is an important tool for
finding galaxies at high redshift, and thus probe the structure of the early
universe. However, the resonance nature of the line and its sensitivity to dust
and neutral gas is still not fully understood.
Aims. We present measurements of the velocity, covering fraction and optical
depth of neutral gas in front of two well known local blue compact galaxies
that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test
observationally the hypothesis that Lyman alpha can escape through neutral gas
by being Doppler shifted out of resonance.
Methods. We present integral field spectroscopy from the GIRAFFE/Argus
spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength
resolution allows us to accurately measure the velocity of the ionized and
neutral gas through the H-alpha emission and Na D absorption, which traces the
ionized medium and cold interstellar gas, respectively. We also present
independent measurements with the VLT/X-shooter spectrograph which confirm our
results.
Results. For ESO 338-IG04, we measure no significant shift of neutral gas.
The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from
knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s.
Based on the relative strength of the Na D absorption lines, we estimate low
covering fractions of neutral gas (down to 10%) in all three cases.
Conclusions. The Na D absorption likely occurs in dense clumps with higher
column densities than where the bulk of the Ly-alpha scattering takes place.
Still, we find no strong correlation between outflowing neutral gas and a high
Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies
are therefore likely escaping due to a low column density and/or covering
fraction.Comment: 9 pages, 3 figure
- âŠ