7,095 research outputs found

    A new intermediate mass protostar in the Cepheus A HW2 region

    Get PDF
    We present the discovery of the first molecular hot core associated with an intermediate mass protostar in the CepA HW2 region. The hot condensation was detected from single dish and interferometric observations of several high excitation rotational lines (from 100 to 880K above the ground state) of SO2 in the ground vibrational state and of HC3N in the vibrationally excited states v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The high-angular resolution observations (1.25'' x 0.99'') of the SO2 J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is concentrated in a compact condensation with a size of 0.6''(430AU), located 0.4'' (300AU) east from the radio-jet HW2. The total SO2 column density in the hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6 x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the nature of the hot and very dense condensation are discussed. From the large column densities of hot gas, the detection of the HC3N vibrationally excited lines and the large SO2 abundance, we favor the interpretation of a hot core heated by an intermediate mass protostar of 10E3 Lo. This indicates that the CepA HW2 region contains a cluster of very young stars

    What Happened to Risk Management During the 2008-09 Financial Crisis?

    Get PDF
    When dealing with market risk under the Basel II Accord, variation pays in the form of lower capital requirements and higher profits. Typically, GARCH type models are chosen to forecast Value-at-Risk (VaR) using a single risk model. In this paper we illustrate two useful variations to the standard mechanism for choosing forecasts, namely: (i) combining different forecast models for each period, such as a daily model that forecasts the supremum or infinum value for the VaR; (ii) alternatively, select a single model to forecast VaR, and then modify the daily forecast, depending on the recent history of violations under the Basel II Accord. We illustrate these points using the Standard and Poorñ€ℱs 500 Composite Index. In many cases we find significant decreases in the capital requirements, while incurring a number of violations that stays within the Basel II Accord limits.risk management;violations;conservative risk strategy;aggressive risk strategy;value-at-risk forecast

    GFC-Robust Risk Management Strategies under the Basel Accord

    Get PDF
    A risk management strategy is proposed as being robust to the Global Financial Crisis (GFC) by selecting a Value-at-Risk (VaR) forecast that combines the forecasts of different VaR models. The robust forecast is based on the median of the point VaR forecasts of a set of conditional volatility models. This risk management strategy is GFC-robust in the sense that maintaining the same risk management strategies before, during and after a financial crisis would lead to comparatively low daily capital charges and violation penalties. The new method is illustrated by using the S&P500 index before, during and after the 2008-09 global financial crisis. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria. The median VaR risk management strategy is GFC-robust as it provides stable results across different periods relative to other VaR forecasting models. The new strategy based on combined forecasts of single models is straightforward to incorporate into existing computer software packages that are used by banks and other financial institutions.Value-at-Risk (VaR);daily capital charges;optimizing strategy;robust forecasts;violation penalties;global financial crisis;Basel II Accord;aggressive risk management strategy;conservative risk management strategy

    A decision rule to minimize daily capital charges in forecasting value-at-risk

    Get PDF
    Under the Basel II Accord, banks and other Authorized Deposit-taking Institutions (ADIs) have to communicate their daily risk estimates to the monetary authorities at the beginning of the trading day, using a variety of Value-at-Risk (VaR) models to measure risk. Sometimes the risk estimates communicated using these models are too high, thereby leading to large capital requirements and high capital costs. At other times, the risk estimates are too low, leading to excessive violations, so that realised losses are above the estimated risk. In this paper we propose a learning strategy that complements existing methods for calculating VaR and lowers daily capital requirements, while restricting the number of endogenous violations within the Basel II Accord penalty limits. We suggest a decision rule that responds to violations in a discrete and instantaneous manner, while adapting more slowly in periods of no violations. We apply the proposed strategy to Standard & Poorñ€ℱs 500 Index and show there can be substantial savings in daily capital charges, while restricting the number of violations to within the Basel II penalty limits.value-at-risk;daily capital charges;optimizing strategy;risk forecasts;endogenous violations;frequency of violations

    The role of low-mass star clusters in massive star formation. The Orion Case

    Full text link
    To distinguish between the different theories proposed to explain massive star formation, it is crucial to establish the distribution, the extinction, and the density of low-mass stars in massive star-forming regions. We analyze deep X-ray observations of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the typical size of protostellar cores. We derived stellar density maps and calculated cluster stellar densities. We found that low-mass stars cluster toward the three massive star-forming regions: the Trapezium Cluster (TC), the Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of 10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star, which is surrounded by a ring of non-extincted low-mass stars. This 'envelope-core' structure is also supported by infrared and optical observations. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion. Finally, although coalescence does not seem a common mechanism for building up massive stars, we show that a single stellar merger may have occurred in the evolution of the OHC cluster, favored by the presence of disks, binaries, and gas accretion.Comment: 17 pages, 11 figures, 3 Tables. Accepted for publication in A&

    Evaluation of an indoor localization system for a mobile robot

    Full text link
    Although indoor localization has been a wide researched topic, obtained results may not fit the requirements that some domains need. Most approaches are not able to precisely localize a fast moving object even with a complex installation, which makes their implementation in the automated driving domain complicated. In this publication, common technologies were analyzed and a commercial product, called Marvelmind Indoor GPS, was chosen for our use case in which both ultrasound and radio frequency communications are used. The evaluation is given in a first moment on small indoor scenarios with static and moving objects. Further tests were done on wider areas, where the system is integrated within our Robotics Operating System (ROS)-based self-developed 'Smart PhysIcal Demonstration and evaluation Robot (SPIDER)' and the results of these outdoor tests are compared with the obtained localization by the installed GPS on the robot. Finally, the next steps to improve the results in further developments are discussed
    • 

    corecore