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Abstract 
 

Under the Basel II Accord, banks and other Authorized Deposit-taking Institutions 

(ADIs) have to communicate their daily risk estimates to the monetary authorities at the 

beginning of the trading day, using a variety of Value-at-Risk (VaR) models to measure 

risk. Sometimes the risk estimates communicated using these models are too high, 

thereby leading to large capital requirements and high capital costs. At other times, the 

risk estimates are too low, leading to excessive violations, so that realised losses are 

above the estimated risk. In this paper we propose a learning strategy that complements 

existing methods for calculating VaR and lowers daily capital requirements, while 

restricting the number of endogenous violations within the Basel II Accord penalty 

limits. We suggest a decision rule that responds to violations in a discrete and 

instantaneous manner, while adapting more slowly in periods of no violations. We 

apply the proposed strategy to Standard & Poor’s 500 Index and show there can be 

substantial savings in daily capital charges, while restricting the number of violations to 

within the Basel II penalty limits. 

 

 

Key words and phrases: Daily capital charges, endogenous violations, frequency of 

violations, optimizing strategy, risk forecasts, value-at-risk. 

 

JEL Classifications: G32, G11, G17, C53. 
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1. Introduction 

 

The Value-at-Risk (VaR) concept has become a standard tool in the exploding area of 

risk measurement and management. In brief, VaR is defined as an estimate of the 

probability and size of the potential loss to be expected over a given period. This 

concept has become especially important following the 1995 amendment to the Basel 

Accord, whereby banks and other Authorized Deposit-taking Institutions (ADIs) were 

permitted to use internal models to calculate their VaR thresholds (see Jorion (2000) for 

a detailed discussion of VaR). Consequently, the last few years have witnessed a 

growing literature comparing modelling approaches and implementation procedures to 

answer the question of how to measure VaR, with many research studies arguing in 

favour or against various VaR models.  

 

The amendment to the Basel Accord was designed to reward institutions with superior 

risk management systems. A back-testing procedure, whereby the realized returns are 

compared with the VaR forecasts, was introduced to assess the quality of the internal 

models. In cases where internal models lead to a greater number of violations than could 

reasonably be expected, given the confidence level, the ADI is required to hold a higher 

level of capital (see Table 1 in the Appendix for the penalties imposed under the Basel 

II Accord). If an ADI’s VaR forecasts are violated more than 10 times in any financial 

year, the ADI may be required to adopt the ‘Standardized’ approach. The imposition of 

such a penalty is severe as it affects the profitability of the ADI directly through higher 

capital charges, has a damaging effect on the ADI’s reputation, and may lead to the 

imposition of a more stringent external model to forecast the ADI’s VaR thresholds. 

That is why financial managers tend to prefer following strategies that are passive and 

conservative.  

 

Excessive conservatism has a negative impact on the profitability of ADIs as higher 

capital charges are subsequently required. Academics and practitioners should ask the 

question if there is room to minimise the capital charges not only using different models 

to forecast VaR but also through a communication strategy given the Basel II Accord. 

ADIs are not allowed to violate more than 10 times in any financial year, but any 

number less than 10 is permitted. Therefore, the decision maker should seek a strategy 
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that allows an endogenous decision as to how many times ADIs should violate in any 

financial year.  

 

In this paper we characterize a strategic market risk disclosure policy meant to reduce 

daily capital charges and to manage the number of violations. We suggest that the 

decision maker should take some actions in each state based on the trade-off between 

expected capital requirements and the expected number of violations. Financial 

managers could adopt a different strategy in favourable situations (a small number of 

violations) than in unfavourable situations (a large number of violations). The amount 

of expected risk that the manager should report to the monetary authority (namely, a 

fraction of the VaR estimated using a given procedure) should increase with the number 

of violations.  

 

In a favourable situation, the decision maker could take more risk (perhaps reporting an 

expected risk lower than the one suggested by the model used to forecast volatility). In 

cases of a small number of violations, communication of a low amount of risk allows 

profiting from the lower capital requirement, subject to having an acceptable trade-off 

with the upside-risk of increasing the number of violations. If the capital requirement is 

lower, more funds can be invested in assets at the cost of a marginal increase in the 

probability of violation. In a situation of a high number of violations, the decision 

maker must take less risk, and reporting high expected risk (even higher than the 

forecast) is needed to decrease the probability of violations. 

 

The remainder of the paper is as follows. In Section 2 we present the main ideas of the 

Basel II Accord Amendment. Section 3 reviews some of the most frequently used 

univariate VaR forecasting models. In Section 4 we present the new market risk 

disclosure strategy. Section 5 gives some experimental results, and Section 6 

summarizes the main conclusions. 

 

2. Forecasting Value-at-Risk and Daily Capital Charges   

  

The Basel II Accord stipulates that the daily capital charge must be set at the higher of 

the previous day’s VaR or the average VaR over the last 60 business days, multiplied by 

a factor k: 
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The multiplication factor, k, is to be set within a range of 3 to 4 depending on the 

supervisor’s assessment of the ADI’s risk management practices and on the results of a 

simple back test (Basel Committee on Banking Supervision (1996)). The multiplication 

factor is determined by the number of times losses exceed the day’s VaR figure (Basel 

Committee on Banking Supervision (1996)). The minimum multiplication factor of 3 is 

in place to compensate for a number of errors that arise in model implementation: 

simplifying assumptions, analytical approximations, small sample biases and numerical 

errors will tend to reduce the true risk coverage of the model (Stahl (1997)). The 

increase in the multiplication factor is then designed to scale up the confidence level 

implied by the observed number of exceptions to the 99 per cent confidence level 

desired by the regulators.  

 

In calculating the number of exceptions, ADIs will be required to compare the 

forecasted VaR numbers with realised profit and loss figures for the previous 250 

trading days. In 1995, the 1988 Basel Accord (Basel Committee on Banking 

Supervision (1988) was amended to allow ADIs to use internal models to determine 

their VaR thresholds (Basel Committee on Banking Supervision (1995)). However, 

ADIs wishing to use internal models must demonstrate that their models are sound. 

 

Value-at-Risk refers to the lower bound of a confidence interval for a (conditional) 

mean. If interest lies in modelling the random variable, Yt , it could be decomposed as 

follows: 

 

 1( | )t t t tY E Y F ε−= + . (2) 
 

This decomposition suggests that Yt  is comprised of a predictable component, 

  E(Yt | Ft−1) , which is the conditional mean, and a random component,  εt . The 

variability of  Yt , and hence its distribution, is determined entirely by the variability of 

 εt . If it is assumed that  εt  follows a distribution such that: 
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 2( , )ε μ σt t tD  (3) 
 

where  μt  and  σ t  are the unconditional mean and standard deviation of  εt , respectively, 

these can be estimated using a variety of parametric and/or non-parametric methods. 

The VaR threshold for  Yt  can be calculated as: 

 

 1( | )t t t tVaR E Y F ασ−= −  (4) 
 

where α  is the critical value from the distribution of εt  to obtain the appropriate 

confidence level. It is possible for σ t  to be replaced by alternative estimates of the 

conditional variance in order to obtain an appropriate VaR (for a useful review of recent 

theoretical results for conditional volatility models, see Li et al. (2002), while McAleer 

(2005) reviews a variety of univariate and multivariate, conditional, stochastic and 

realized. volatility models). The next section describes several models that are widely 

used to forecast the 1-day ahead conditional variances and VaR thresholds.  

 

3. Models for Forecasting VaR 

 

As discussed previously, ADIs can use internal models to determine their VaR 

thresholds. There are alternative time series models for the conditional volatility,  σ t . In 

what follows, we present several conditional volatility models to evaluate our strategic 

market risk disclosure, namely GARCH, GJR and EGARCH, with both normal and t 

distribution errors. For an extensive discussion of the theoretical properties of several of 

these models, see Ling and McAleer (2002a, 2002b, 2003a). As an alternative to 

estimating the parameters, we use the exponential weighted moving average (EWMA) 

method by RiskmetricsTM (1996) that calibrates the unknown parameters. The models 

are presented in increasing order of complexity.  

 

3.1 GARCH 

 

For a wide range of financial data series, time-varying conditional variances can be 

explained empirically through the autoregressive conditional heteroskedasticity 

(ARCH) model, which was proposed by Engle (1982). When the time-varying 
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conditional variance has both autoregressive and moving average components, this 

leads to the generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). It is 

very common to impose the widely estimated GARCH(1,1) specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, ty :   

 

 1 2 1 2, 1t t ty yφ φ ε φ−= + + <  (5) 
 

for nt ,...,1= , where the shocks to returns are given by:  

 

 
2
1 1

, ~ (0,1)

,
t t t t

t t t
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ε η η
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=
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and 0, 0, 0ω α β> ≥ ≥  are sufficient conditions to ensure that the conditional variance 

0>th . The stationary AR(1)-GARCH(1,1) model can be modified to incorporate a non-

stationary ARMA(p,q) conditional mean and a stationary GARCH(r,s) conditional 

variance, as in Ling and McAleer (2003b). 

 

3.2 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements 

in daily returns) on the conditional variance, th , are assumed to be the same as the 

negative shocks (or downward movements in daily returns). In order to accommodate 

asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) proposed a model 

(hereafter GJR), for which GJR(1,1) is defined as follows:  

 

 2
1 1 1( ( )) ,t t t th I hω α γ η ε β− − −= + + +  (7) 

 

where 0,0,0,0 ≥≥+≥> βγααω  are sufficient conditions for ,0>th  and )( tI η  is an 

indicator variable defined by: 

 

 ( )
1, 0
0, 0

t
t

t

I
ε

η
ε
<⎧

= ⎨ ≥⎩
 (8) 
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 as tη  has the same sign as tε . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient γ . For financial data, it is expected that 0≥γ  because negative shocks 

have a greater impact on risk than do positive shocks of similar magnitude. The 

asymmetric effect, ,γ  measures the contribution of shocks to both short run persistence, 

2α γ+ , and to long run persistence, 2α β γ+ + . 

 

3.3 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH, EGARCH(1,1), model of Nelson (1991), namely:  

 

 ε εω α γ β β− −
−

− −

= + + + <1 1
1

1 1

log log , | | 1t t
t t

t t

h h
h h

 (9) 

 

where the parameters α , β  and γ  have different interpretations from those in the 

GARCH(1,1) and GJR(1, 1) models.  

 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0>th ; (ii) moment conditions are required for the 

GARCH and GJR models as they are dependent on lagged unconditional shocks, 

whereas EGARCH does not require moment conditions to be established as it depends 

on lagged conditional shocks (or standardized residuals);  

 

EGARCH captures asymmetries differently from GJR. The parameters α  and γ  in 

EGARCH(1,1) represent the magnitude (or size) and sign effects of the standardized 

residuals, respectively, on the conditional variance, whereas α  and γα +  represent the 

effects of positive and negative shocks, respectively, on the conditional variance in 

GJR(1,1). 
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3.4 Exponentially Weighted Moving Average (EWMA) 

 

The three conditional volatility models given above are estimated under the following 

distributional assumptions on the conditional shocks: (1) normal, and (2) t. As an 

alternative to estimating the parameters of the appropriate conditional volatility models, 

RiskmetricsTM (1996) developed a model which estimates the conditional variances and 

covariances based on the exponentially weighted moving average (EWMA) method, 

which is, in effect, a restricted version of the ARCH(∞ ) model. This approach forecasts 

the conditional variance at time t as a linear combination of the lagged conditional 

variance and the squared unconditional shock at time 1t − . The EWMA model 

calibrates the conditional variance as: 

 

 2
1 1(1 )λ λ ε− −= + −t t th h  (10) 

 
where λ  is a decay parameter. Riskmetrics™ (1996) suggests that λ  should be set at 

0.94 for purposes of analysing daily data. As no parameters are estimated, there is no 

need to establish any moment or log-moment conditions for purposes of demonstrating 

the statistical properties of the estimators. 

 

4. A Dynamic Decision Rule for Strategic Market Risk Disclosure 

 

Recent empirical studies (see, for example, Berkowitz and O'Brien (2001) and Gizycki 

and Hereford (1998)) indicate that some financial institutions overestimate their market 

risks in disclosures to supervisory authorities. This implies a costly restriction to the 

banks trading activity. ADIs may prefer to report high VaR numbers to avoid the 

possibility of regulatory intrusion. This conservative risk reporting suggests that 

efficiency gains may be feasible. Therefore, as ADIs already have effective tools for the 

measurement of market risk, while satisfying the qualitative requirements, ADI 

managers could wilfully attempt to reduce the daily capital charges by implementing a 

context-dependent market risk disclosure policy. For a discussion of alternative 

approaches to optimize VaR and daily capital charges, see McAleer (2008). 

 

The novel feature of our analysis is the assumption that ADIs may minimize daily 

capital charges while the number of violations remains below 10. In particular, we 
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assume market risk disclosures should be proportional to the VaR measured based on 

the ADI’s internal model. The intuition is that the ADI manager is willing to be 

conservative when the number of violations could be close to ten, and aggressive when 

the number of violations is small. We find that when the ADI manager uses our 

dynamic rule decision to market risk disclosures, taking into account the number of 

violations, the average daily capital charges during the 260 trading days of 2007 can 

decrease by up to 14%. A special case of the endogenous violations discussed above, in 

which the number of violations is not a choice variable but is exogenously determined, 

is analysed in McAleer and da Veiga (2008a, 2008b).  

 

In this paper we propose a simple market risk disclosure policy based on a new dynamic 

decision rule designed to minimize daily capital charges while restricting the number of 

violations to less than 10. The question here is what proportion of the VaR calculated by 

the ADI’s internal model should be reported as a market risk measure. If we follow a 

conservative risk reporting strategy (that is, a market risk disclosure greater than the 

VaR), we will commit few violations but will incur higher capital costs. However, if the 

market risk disclosure is smaller than the VaR, we would have a relatively low capital 

requirement but a high risk of incurring too many violations.  

 

We propose the following Market Risk Disclosure (MRD) Policy:  

 

 ,=t t tMRD P VaR  (11) 
 
where Pt  varies with the number of violations to communicate risk to the monetary 

authority. The variable Pt is a measure of how conservative or aggressive the MRD is in 

comparison with the estimated risk: Pt < 1 corresponds to an aggressive strategy 

because the MRD is below the estimated risk, whereas Pt >1 represents a conservative 

approach. 

 

Dynamic Learning Strategy (DYLES) 

 

 0 1 25,
1

* ,
t

P R
t t s

s
P P nov Iθ θ−

=

= + − ∑  (12) 
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The dynamic learning function, Pt , consists of three additive terms: 

 

(1) 0P  is an initial condition and, as time passes, has a decreasing effect on DYLES. 

 

(2) θ P  is the penalty for each violation: any additional violation should be penalized, 

thereby increasing the market risk disclosure and making our strategy more 

conservative. 

 

(3) 1−tnov  is the number of violations up to period t-1.  

 

(4) θ R  is the reward (that is, the reduction in the penalty) for each 25-day period 

without any violations.  

 

(5) I25,t indicates whether there has been a violation in a given period. We divide the 

250-day testing period, into 10 fixed periods of 25 days. At the end of each 25-day 

interval, we check whether there have been any violations during the period. If there 

have been no violations, the reward consists of decreasing the penalty by θ R .  

 

The indicator function, 25,tI , performs the counting: it takes the value one when there 

have been no violations during a fixed 25-day period, and zero otherwise. It can only 

change value at the end of each 25-day period. At that point, the reward is either given 

or it is not:  

 

 25
25,

1 25 , 1, 2, ...,10 0
0

t t
t

if t j j and nov nov
I

otherwise
−= = − =⎧

= ⎨
⎩

  (13) 

 

This dynamic learning penalty function, tP , is designed to decrease the capital 

requirements of a MRD policy based on a given VaR, while restricting the number of 

violations in a given period within the limits of the Basel II Accord. 

 

DYLES works in a complementary manner with the volatility model, but behaves quite 

differently from the volatility models: 
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 It operates in a discrete and fast manner when there is a violation, whereas the 

volatility models adjust smoothly to violations. 

 

 It is context sensitive as it takes different values depending on the history of the 

violations. It is more conservative when there have been many violations, and is 

less conservative when there have been fewer violations. 

 

 It operates asymmetrically over time, as it reacts immediately when there is a 

violation, but moves discretely when there is a period without any violations. 

 

The parameters of the penalty function would need to be calibrated for a given asset and 

for each model to calculate VaR. In the next section, we provide some insights as to 

how well this function works for a given portfolio and for different models of the 

conditional variance.  

 

5. Experimental Results 

 

When we have proposed a new MRD policy based on a dynamic learning penalty 

function, we are interested in assessing how well it performs in terms of daily capital 

costs and the number of violations compared with the alternative strategy (that is, no 

strategy) of not responding to either violations or the absence of violations.  

 

Owing to the dearth of theoretical results in this area, we examine the behaviour of our 

penalty function using calibration. As the basis for comparison we use Standard and 

Poor’s Composite 500 index from 1 January 2007 to 31 December of 2007. The 

parameters in the vector 0 0, 0, 0θ θ⎡ ⎤Θ = > > >⎣ ⎦
P RP  in (12) have to be positive, and 

calibration suggests the following intervals:  

 

[ ]0 0.6, ...,1.2P ∈  ,  

[ ]0.06, ..., 0.12Pθ ∈ , 

[ ]0.1, ..., 0.4Rθ ∈ . 
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 P0 < 0.6 (aggressive strategies) would imply numbers of violations in excess of 10, and 

P0 greater than 1.2 (conservative risk reporting) would lead to high daily capital 

requirements. 

 

The calibration procedure is as follows 

: 

1. We assume the models described in Section 3 to be the internal ADI’s models 

that are used to forecast the 1-day ahead conditional variances and VaR 

thresholds. 

2. For all possible parameter combinations of Θ , we calculate Pt , as given in (12). 

3. Given the VaR calculated in step 1 and Pt  in step 2, calculate the market risk 

disclosure using (11). 

4. The number of violations (NoV) and the average capital requirements (AvCRq) 

for the whole period are reported.  

5. Finally, we compare NoV and the AvCRq requirements with the no strategy 

policy. 

 

5.1  Data and volatility measures 

 

The data used for the calibration of DYLES are the closing daily prices for Standard and 

Poor’s Composite 500 Index. Data were obtained from the Ecowin Financial Database 

for the period 3 January 2000 to 31 December 2007.  

 

The returns at time t ( )tR  are defined as: 

 ( )1log / −=t t tR P P , (14) 
 

where tP  is the market price.  

 

[Insert Figure 1 around here] 

 

Figure 1 shows the Standard and Poor’s returns. The series exhibit clustering, which 

could be captured by an appropriate time series model. The descriptive statistics for the 

index returns are given in Table 2. The mean is close to zero, and the range is between – 
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6% and 5.57%. The Jarque-Bera Lagrange multiplier test for normality rejects the null 

hypothesis of normally distributed returns. As the series displays a high kurtosis, this 

would seem to indicate the existence of extreme observations, which is not surprising 

for financial returns data. 

 

[Insert Table 2 around here] 

 

Several measures of volatility are available in the literature. In order to gain some 

intuition, we adopt the measure proposed in Franses and van Dijk (1999), where the true 

volatility of returns is defined as: 

 

 ( )( )2
1| −= −t t t tV R E R F , (15) 

 

where 1−tF  is the information set at time t-1. Figure 2 shows the S&P volatility defined 

as in (15). The series exhibit clustering, which needs to be captured by an appropriate 

time series model. The volatility of the series appears to be high during the early 2000’s, 

followed by a quiet period from 2003 to the beginning of 2007. The volatility appears to 

increase dramatically around 2007, due in large part to the worsening global credit 

environment. This increase in volatility persists until the end of the period, and 

continues during 2008. 

 

[Insert Figure 2 around here] 

  

[Insert Table 3 around here] 

 

5.2  Results 

 

In Table 3 we see the differences between using DYLES or a passive strategy for the 

S&P and several VaR models. After calibration, we have chosen the set of parameters 

P0 = 1.2, θP = 0.12, θR = 0.3, which is the combination which seems to be most widely 

optimal across the various models.  
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Figure 1 
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Table 2 

0
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Series: SP_RETURNS
Sample 3/01/2000 18/01/2008
Observations 2086

Mean       0.000431
Median   0.001107
Maximum  5.573610
Minimum -6.004513
Std. Dev.   1.094369
Skewness   0.048622
Kurtosis   5.760783

Jarque-Bera  663.2940
Probability  0.000000
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We observe in the last column that the capital requirement decreases in all cases 

between 0.4% (3 basis points) and 14.01% (96 basis points) when using DYLES, except 

when the GARCH-t model is used. Moreover, the number of violations decreases when 

they were above 10 and increases, within the limits, when there are few violations. The 

exception in Table 4 in the Appendix shows that the best result for the GARCH-t model 

and DYLES is for Θ = [1.0, 0.11, 0.3] with 9 violations and 5.80% as AvCRq, that is, 

90 basis points less than the no strategy policy. 

 

We conclude that DYLES always beats the passive strategy when properly calibrated. 

Due to its context-sensitive behaviour, DYLES tends to concentrate the distribution of 

the number of violations. In cases where there is conservative behaviour, it tends to 

increase the number of violations, whereas when the number of violations is large, it 

tends to reduce it to below the limit of 10. 

 

When properly used, DYLES can decrease the daily capital requirements substantially, 

up to 96 basis points in the case analyzed above, while restricting the number of 

violations to within the limits of the Basel II Accord.  
 

[Insert Figure 3 around here] 

 

In order to gain some intuition, in Figure 3 we present a comparison of DYLES with the 

results for RiskmetricsTM. 

 

a. The returns data are for the Standard and Poor’s index during the last 100 days 

of 2007. 

b. The stepwise line corresponds to the values of DYLES (Pt) during the period for 

which Θ = [1.2, 0.12, 0.3]. 

c. Of the two bottom lines, the one that starts higher is the VaR calculated by 

RiskmetricsTM  

d. Of the two bottom lines, the one (line with symbols) that starts lower (with 

greater risk) is the VaR of RiskmetricsTM + DYLES, which is our RMD. 
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Table 3 

 

 Benefits from DYLES, Standard and Poor’s, θ = [1.2, 0.12, 0.3] 

 

 

Model 
 

DYLES 

 

Passive 

Improvement 

DYLES vs Passive 

 NoV AvCRq NoV AvCRq NoV AvCRq Basic points 

EGARCH 9 5.94% 13 6.24% -4 4.8% 30 

EGARCH-t 7 5.86% 9 6.82% -2 14.1% 96 

GARCH 8 6.00% 11 6.54% -3 8.3% 54 

GARCH-t 7 7.00% 3 6.70% 4 -4.5% -30 

GJR 8 6.00% 9 6.75% -1 11.1% 75 

GJR-t 8 7.01% 4 7.04% 4 0.4% 3 

RiskmetricsTM 
8 5.98% 12 6.61% -4 9.5% 63 
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Note that when the RiskmetricsTM + DYLES line is above the RiskmetricsTM line, it 

implies less risk and leads to lower daily capital requirements. The improvement in 

capital requirements is given by the difference between the red (dark) and blue (light) 

lines in Figure 3. This is attributable exclusively to the penalty function of the dynamic 

learning function strategy (DYLES). 
 

Figure 4 shows the four previous series for the whole sample, from 1 January 2007 to 

31 December 2007. As we can see, the lines representing the RiskmetricsTM VaR and the 

RMD policy move together when there is no violation. As soon as a violation occurs, 

the DYLES strategy becomes more conservative and moves away from zero until a 

period of no violations occurs, when it becomes more aggressive and moves toward 

zero. 

 

[Insert Figure 4 around here] 

  

Overall, the capital requirements for DYLES are lower than when DYLES is not used 

by 9.5% (63 basis points). The number of violations also decreases from 12 to 8. This is 

a general pattern observed across different VaR models to varying degrees, as seen in 

Table 3 above. 

 

This example suggests that, with proper calibration, the DYLES strategy can help 

decrease daily capital requirements while restricting the number of violations to within 

the desired limits.  
 

Tables 4-7 in the Appendix show the NoV and AvCRq for values of Θ when two 

conditions are met: (i) NoV is less than 10; and (ii) AvCRq is less than 6.00%. The first 

criterion is consideredbecause we want our MRD to be sound for the monetary 

authority, while the second considers a reduction in the AvCRq by 9% (61 basis points) 

when compared with the RiskmetricsTM procedure. 
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Figure 4  

 
Standard&Poor’s / VaR RiskmetricsTM / VaR RiskmetricsTM + DYLES / Dyles  

260 observations. Θ = [1.2, 0.12, 0.3]. 
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Based on Tables 4-7 and the previous analysis, we conclude that there are combinations 

of parameters in Θ that can reduce the daily capital requirements compared with 

existing models and strategies, while producing an acceptable number of violations. It 

would seem to be straightforward to find a parameter vector Θ with a systematically 

smaller AvCRq and NoV below 10 for all the models, when compared with the no 

strategy policy.  

  

It is noteworthy that, while VaR is used by numerous financial institutions, it is not 

without shortcomings. The VaR measure can under or overestimate risk. There is even 

debate as to how best to model the behaviour of volatility in market returns. Relying on 

DYLES, which modulates market risk disclosure, can reduce the effects of these 

deficiencies, as DYLES concentrates NoV throughout the models tested. In some of the 

cases discussed above, DYLES can control the number of violations at low cost in terms 

of the daily capital requirements.  

 

6. Conclusion 

 

Under the Basel II Accord, ADIs have to communicate their risk estimates to the 

monetary authorities, and use a variety of VaR models to estimate risks. ADIs are 

subject to a back-test that compares the daily VaR to the subsequent realized returns, 

and ADIs that fail the back-test can be subject to the imposition of standard models that 

can lead to higher daily capital costs. Additionally, the Basel II Accord stipulates that 

the daily capital charge that the bank must carry as protection against market risk must 

be set at the higher of the previous day’s VaR or the average VaR over the last 60 

business days, multiplied by a factor k. An ADI’s objective is to maximize profits, so 

they wish to minimize their capital charges while restricting the number of violations in 

a given year below the maximum of 10 allowed by the Basel II Accord.  

 

VaR models currently in use can lead to high daily capital requirements or an excessive 

number of violations. In this paper we proposed a new dynamic learning strategy, 

DYLES, designed to minimize the daily capital requirements, while restricting the 

number of violations to below the penalty limit. We designed a market risk disclosure 

strategy driven by the number of violations to communicate the risk to the monetary 

authority. The strategy is context sensitive, and depends on the history of violations. It 
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is intended to penalize VaR models when a loss exceeds the reported VaR by increasing 

the risk for the following periods. On the other hand, after a given period with no 

violations, the criterion offers a reward by decreasing the reported risk. 

 

In order to illustrate the practicability of DYLES, we applied it to the Standard and Poor 

500 Index using seven different VaR models. After estimation of the VaR models and 

calibration of the parameters, we showed that it could lower the daily capital 

requirements substantially (by up to 14.3%, or 95 basis points, when we compared, for 

example, the GJR-t model + DYLES to the no strategy RiskmetricsTM policy), while 

restricting the numbers of violations to within the Basel II Accord limits (9 for GJR-t + 

DYLES and 12 for the no strategy RiskmetricsTM  policy ).  

 

Simplicity would seem to have been the key to the popularity of VaR, particularly as a 

means of providing information to an ADI’s senior management. DYLES is as simple 

and intuitive as VaR. When there is a violation, it increases immediately, thereby 

becoming more conservative and decreasing the risks of further violations, whereas 

after a period of no violations, it becomes less conservative, thereby allowing lower 

daily capital requirements. 

 

The preceding arguments suggest that DYLES can be used profitably by ADIs to reduce 

their average daily capital requirements, while restricting the numbers of violations to 

the Basel II Accord penalty limits.  
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Appendix 1 

 

 

Table 1: Basel Accord Penalty Zones 

 

Zone Number of Violations Increase in k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

 

Note: The number of violations is given for 250 business days. 

The penalty structure under the Basel II Accord is specified for 

the number of penalties and not their magnitude, either 

individually or cumulatively.   
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Table 4  
 

MRD results when NoV < = 10 and CRq < 6.1% 
 

EGARCH EGARCH-t 

NoV AvCRq P0 θP θR NoV AvCRq P0 θP θR 

7 5.97% 0.9 0.10 0.1 9 5.91% 0.8 0.11 0.3 

9 5.91% 0.9 0.12 0.3 9 5.94% 1.1 0.06 0.2 

9 6.00% 1.0 0.10 0.3 9 5.95% 1.1 0.11 0.3 

9 5.70% 1.2 0.06 0.2 9 5.87% 1.2 0.09 0.3 

9 5.91% 1.2 0.07 0.2 8 5.70% 1.2 0.11 0.3 

7 5.93% 1.2 0.10 0.2 7 5.86% 1.2 0.12 0.3 

9 5.94% 1.2 0.12 0.3
     

 
 
 
 
 
 

Table 5  
 

MRD results when NoV < = 10 and CRq < 6.1% 
 

GARCH GARCH-t 

NoV AvCRq P0 θP θR NoV AvCRq P0 θP θR 

9 5.89% 0.8 0.11 0.3 7 6.00% 0.9 0.11 0.2 

9 5.93% 1.1 0.11 0.3 9 5.80% 1.0 0.11 0.3 

8 5.85% 1.2 0.11 0.3 8 5.87% 1.1 0.11 0.3 
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Table 6  
 

MRD results when NoV < = 10 and CRq < 6.1% 
 

GJR GJR-t 

NoV AvCRq P0 θP θR NoV AvCRq P0 θP θR 

9 5.85% 0.6 0.11 0.2 8 6.00% 0.6 0.10 0.2 

9 5.92% 1.1 0.06 0.2 8 5.90% 1.0 0.07 0.2 

9 5.92% 1.1 0.12 0.3 9 5.66% 1.0 0.12 0.3 

9 5.87% 1.2 0.11 0.3 9 5.90% 1.1 0.10 0.3 
 
 
 
 
 
 
 
 
 

Table 7  
 

MRD results when NoV < = 10 and CRq < 6.1% 
 

RiskmetricsTM 

NoV AvCRq P0 θP θR 

9 5.81% 0.8 0.11 0.3 

8 5.76% 1.2 0.11 0.3 

8 5.98% 1.2 0.12 0.3 
 


