38 research outputs found

    A comparison of seafloor habitats and associated benthic fauna in areas open and closed to bottom trawling along the central California Continental Shelf

    Get PDF
    Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.

    Amerind Ancestry, Socioeconomic Status and the Genetics of Type 2 Diabetes in a Colombian Population

    Get PDF
    The “thrifty genotype” hypothesis proposes that the high prevalence of type 2 diabetes (T2D) in Native Americans and admixed Latin Americans has a genetic basis and reflects an evolutionary adaptation to a past low calorie/high exercise lifestyle. However, identification of the gene variants underpinning this hypothesis remains elusive. Here we assessed the role of Native American ancestry, socioeconomic status (SES) and 21 candidate gene loci in susceptibility to T2D in a sample of 876 T2D cases and 399 controls from Antioquia (Colombia). Although mean Native American ancestry is significantly higher in T2D cases than in controls (32% v 29%), this difference is confounded by the correlation of ancestry with SES, which is a stronger predictor of disease status. Nominally significant association (P<0.05) was observed for markers in: TCF7L2, RBMS1, CDKAL1, ZNF239, KCNQ1 and TCF1 and a significant bias (P<0.05) towards OR>1 was observed for markers selected from previous T2D genome-wide association studies, consistent with a role for Old World variants in susceptibility to T2D in Latin Americans. No association was found to the only known Native American-specific gene variant previously associated with T2D in a Mexican sample (rs9282541 in ABCA1). An admixture mapping scan with 1,536 ancestry informative markers (AIMs) did not identify genome regions with significant deviation of ancestry in Antioquia. Exclusion analysis indicates that this scan rules out ∼95% of the genome as harboring loci with ancestry risk ratios >1.22 (at P < 0.05)

    The Effect of a DNA Repair Gene on Cellular Invasiveness: Xrcc3 Over-Expression in Breast Cancer Cells

    Get PDF
    Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3) and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion

    Magically magnetic gadolinium

    No full text

    The Oued Belif Hematite-Rich Breccia: A Miocene Iron Oxide Cu-Au-(U-REE) Deposit in the Nefza Mining District, Tunisia

    No full text
    International audienceThe upper Miocene Oued Belif ring-shaped breccia is located in the Nefza mining district of northern Tunisia, within the internal zone of the collisional Alpine Maghrebide belt. It encloses chaotic Triassic material (evaporites, altered siltites, and pelites) within an extrusive diapiric structure reactivated in a late Miocene nappe emplacement episode. This deep-rooted structure drove the hydrothermal activity that caused the brecciation of the Oued Belif breccia and the emplacement of two generations of shallow felsic magmatism, which, most notably, include a Serravallian granodiorite stock and a Tortonian rhyodacite dome. The inverted cone-shaped matrix-supported Oued Belif breccia comprises clasts of Triassic material and others deriving from the regional substrate, as well as a very small amount of volcanic-related material that suggests a possible phreatomagmatic origin. Fine-grained, low-Ti, Si-Al-rich hematite (>= 20 vol %) is the main matrix mineral, along with rare earth element (REE) minerals (bastnaesite, parisite, and subordinate monazite) and U minerals (uraninite). The Oued Belif breccia is not an economic Cu-Au deposit, although it does possess a distinct geochemical anomaly in mafic (Cu-Co-Au) elements, with local Cu enrichment at depth (from drill core material), as well as in felsic (Bi-W-Sn-U) elements. A multiphase alteration episode (K-Fe-(Mg) metasomatism) responsible for the formation of K-feldspar, Fe phlogopite, Fe muscovite, and tourmaline, with fluorite and barite, predates the Fe-light REE (LREE)-U mineralization. The major brecciation event occurred slightly after this alteration and is coeval with the main iron oxide-LREE-U mineralization event and the emplacement of the Oued Belif rhyodacite intrusion. Hydrothermal mineralizing fluids were hot (>= 540 degrees C), saline and F-CO2-rich brines, possibly with a mixed, basinal (salt-related) and magmatic (alkaline-related) origin. Except for its lack of economic Cu and Au content, the Oued Belif breccia shares most typical attributes of the hematite group of iron oxide copper-gold (IOCG) deposits. One may therefore classify it either as an "iron oxide-associated-alkali-altered" (Porter, 2010) or as an "iron oxide uranium" (Skirrow, 2010) mineral system. K-Ar dating of K-feldspar sets the Oued Belif breccia formation at 9.2 +/- 0.25 Ma, which could make it the youngest presently known representative of the iron oxide-associated-alkali-altered-IOCG class of deposits. From a geodynamic viewpoint, the Oued Belif structure fits within a still active collisional belt, even though the Oued Belif breccia was formed in a postcollisional stage. In this respect, Oued Belif differs from most other IOCG deposits, especially from older Proterozoic ones. It nevertheless shares two essential characteristics considered necessary to yield IOCG deposits (Skirrow, 2010), namely a metasomatized subcontinental lithospheric mantle and a lithospheric delamination process. Identifying the Oued Belif breccia as a member of the iron oxide-associated-alkali-altered-IOCG family opens new frontiers within the study of IOCG deposits within the geodynamic environment of collisional belts. Future research in this area should focus particularly on the circum-Mediterranean segment of the Alpine belt

    Iterations of ytterbium

    No full text
    corecore