233 research outputs found
Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers
<p>Abstract</p> <p>Background</p> <p>In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences.</p> <p>Results</p> <p>In total 48 ribosomal proteins were obtained for the collembolan <it>Folsomia candida</it>. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length), of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda.</p> <p>Conclusion</p> <p>Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.</p
Recommended from our members
Apraxia of speech and cerebellar mutism syndrome: a case study
Background
Cerebellar mutism syndrome (CMS) or posterior fossa syndrome (PFS) consists of a constellation of neuropsychiatric, neuropsychological and neurogenic speech and language deficits. It is most commonly observed in children after posterior fossa tumor surgery. The most prominent feature of CMS is mutism, which generally starts after a few days after the operation, has a limited duration and is typically followed by motor speech deficits. However, the core speech disorder subserving CMS is still unclear.
Case presentation
This study investigates the speech and language symptoms following posterior fossa medulloblastoma surgery in a 12-year-old right-handed boy. An extensive battery of formal speech (DIAS = Diagnostic Instrument Apraxia of Speech) and language tests were administered during a follow-up of 6 weeks after surgery. Although the neurological and neuropsychological (affective, cognitive) symptoms of this patient are consistent with Schmahmann’s syndrome, the speech and language symptoms were markedly different from what is typically described in the literature. In-depth analyses of speech production revealed features consistent with a diagnosis of apraxia of speech (AoS) while ataxic dysarthria was completely absent. In addition, language assessments showed genuine aphasic deficits as reflected by distorted language production and perception, wordfinding difficulties, grammatical disturbances and verbal fluency deficits.
Conclusion
To the best of our knowledge this case might be the first example that clearly demonstrates that a higher level motor planning disorder (apraxia) may be the origin of disrupted speech in CMS. In addition, identification of non-motor linguistic disturbances during follow-up add to the view that the cerebellum not only plays a crucial role in the planning and execution of speech but also in linguistic processing. Whether the cerebellum has a direct or indirect role in motor speech planning needs to be further investigated
Population bottleneck has only marginal effect on fitness evolution and its repeatability in dioecious Caenorhabditis elegans
The predictability of evolution is expected to depend on the relative contribution of deterministic and stochastic processes. This ratio is modulated by effective population size. Smaller effective populations harbor less genetic diversity and stochastic processes are generally expected to play a larger role, leading to less repeatable evolutionary trajectories. Empirical insight into the relationship between effective population size and repeatability is limited and focused mostly on asexual organisms. Here, we tested whether fitness evolution was less repeatable after a population bottleneck in obligately outcrossing populations of Caenorhabditis elegans. Replicated populations founded by 500, 50, or five individuals (no/moderate/strong bottleneck) were exposed to a novel environment with a different bacterial prey. As a proxy for fitness, population size was measured after one week of growth before and after 15 weeks of evolution. Surprisingly, we found no significant differences among treatments in their fitness evolution. Even though the strong bottleneck reduced the relative contribution of selection to fitness variation, this did not translate to a significant reduction in the repeatability of fitness evolution. Thus, although a bottleneck reduced the contribution of deterministic processes, we conclude that the predictability of evolution may not universally depend on effective population size, especially in sexual organisms
Matrix product operators for symmetry-protected topological phases: Gauging and edge theories
Projected entangled pair states (PEPS) provide a natural ansatz for the
ground states of gapped, local Hamiltonians in which global characteristics of
a quantum state are encoded in properties of local tensors. We develop a
framework to describe on-site symmetries, as occurring in systems exhibiting
symmetry-protected topological (SPT) quantum order, in terms of virtual
symmetries of the local tensors expressed as a set of matrix product operators
(MPOs) labeled by distinct group elements. These MPOs describe the possibly
anomalous symmetry of the edge theory, whose local degrees of freedom are
concretely identified in a PEPS. A classification of SPT phases is obtained by
studying the obstructions to continuously deforming one set of MPOs into
another, recovering the results derived for fixed-point models [X. Chen et al.,
Phys. Rev. B 87, 155114 (2013)]. Our formalism accommodates perturbations away
from fixed point models, opening the possibility of studying phase transitions
between different SPT phases. We also demonstrate that applying the recently
developed quantum state gauging procedure to a SPT PEPS yields a PEPS with
topological order determined by the initial symmetry MPOs. The MPO framework
thus unifies the different approaches to classifying SPT phases, via
fixed-points models, boundary anomalies, or gauging the symmetry, into the
single problem of classifying inequivalent sets of matrix product operator
symmetries that are defined purely in terms of a PEPS.Comment: 16 + 19 pages, 13 figures; v2 substantial changes to all sections,
new appendices added; v3 published versio
Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta
<p>Abstract</p> <p>Background</p> <p>Metallothionein (<it>mt</it>) transcription is elevated in heavy metal tolerant field populations of <it>Orchesella cincta </it>(Collembola). This suggests that natural selection acts on transcriptional regulation of <it>mt </it>in springtails at sites where cadmium (Cd) levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (<it>pmt</it>) and their functional significance for <it>mt </it>expression.</p> <p>Results</p> <p>We sequenced approximately 1600 bp upstream the <it>mt </it>coding region by genome walking. Nine <it>pmt </it>alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer) and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in <it>mt </it>induction levels between these two stressors were observed.</p> <p>Conclusion</p> <p>The <it>pmt </it>alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the <it>Orchesella cincta </it>metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.</p
Ka-band to L-band frequency down-conversion based on III–V-on-silicon photonic integrated circuits
- …