269 research outputs found

    Identifying priority and bright spot areas for improving diabetes care: a geospatial approach.

    Get PDF
    The objective of this study was to describe a novel geospatial methodology for identifying poor-performing (priority) and well-performing (bright spot) communities with respect to diabetes management at the ZIP Code Tabulation Area (ZCTA) level. This research was the first phase of a mixed-methods approach known as the focused rapid assessment process (fRAP). Using data from the Lehigh Valley Health Network in eastern Pennsylvania, geographical information systems mapping and spatial analyses were performed to identify diabetes prevalence and A1c control spatial clusters and outliers. We used a spatial empirical Bayes approach to adjust diabetes-related measures, mapped outliers and used the Local Moran\u27s I to identify spatial clusters and outliers. Patients with diabetes were identified from the Lehigh Valley Practice and Community-Based Research Network (LVPBRN), which comprised primary care practices that included a hospital-owned practice, a regional practice association, independent small groups, clinics, solo practitioners and federally qualified health centres. Using this novel approach, we identified five priority ZCTAs and three bright spot ZCTAs in LVPBRN. Three of the priority ZCTAs were located in the urban core of Lehigh Valley and have large Hispanic populations. The other two bright spot ZCTAs have fewer patients and were located in rural areas. As the first phase of fRAP, this method of identifying high-performing and low-performing areas offers potential to mitigate health disparities related to diabetes through targeted exploration of local factors contributing to diabetes management. This novel approach to identification of populations with diabetes performing well or poor at the local community level may allow practitioners to target focused qualitative assessments where the most can be learnt to improve diabetic management of the community

    Identifying Priority and “Bright-Spot” Counties for Diabetes Preventive Care in Appalachia: An Exploratory Analysis

    Get PDF
    Introduction: Type 2 diabetes mellitus (T2DM) prevalence and mortality in Appalachian counties is substantially higher when compared to non-Appalachian counties, although there is significant variation within Appalachia. Purpose: The objectives of this research were to identify low-performing (priority) and high-performing (bright spot) counties with respect to improving T2DM preventive care. Methods: Using data from the Centers for Medicare and Medicaid (CMS), the Dartmouth Atlas of Health Care, and the Appalachia Regional Commission, conditional maps were created using county-level estimates for T2DM prevalence, mortality, and annual hemoglobin A1c (HbA1c) testing rates. Priority counties were identified using the following criteria: top 33rd percentile for T2DM mortality; top 33rd percentile for T2DM prevalence; bottom 50th percentile for A1c testing rates. Bright spot counties were identified as counties in the bottom 33rd percentile for T2DM mortality, the top 33rd percentile for T2DM prevalence; and the top 50th percentile for HbA1c testing rates. Results: Forty-one priority counties were identified (those with high T2DM mortality, high T2DM prevalence, and low HbA1c testing rates), which were located primarily in Central and North Central Appalachia; and 17 bright spot counties were identified (high T2DM prevalence, low T2DM mortality, and high HbA1c testing rates), which were scattered throughout Appalachia. Eight of the 17 bright spot counties were adjacent to priority counties. Implications: By employing conditional mapping to T2DM, multiple variables can be summarized into a single, easily interpretable map. This could be valuable for T2DM-prevention programs seeking to prioritize diagnostic and intervention resources for the management of T2DM in Appalachia

    Ladder operators for subtle hidden shape invariant potentials

    Full text link
    Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.Comment: 9 pages, based on the talk given at International Conference Progress in Supersymmetric Quantum Mechanics (PSQM03), Valladolid, Spain, 15-19 July, 2003, to appear in a Special Issue of J. Phys. A: Math. Ge

    Cost-effectiveness of In-Home Cognitive Behavioral Therapy for low-income depressed mothers participating in early childhood prevention programs

    Get PDF
    To determine the cost-effectiveness of In-Home Cognitive Behavioral Therapy (IH-CBT) for low-income mothers enrolled in a home visiting program

    Exactly solvable models of supersymmetric quantum mechanics and connection to spectrum generating algebra

    Get PDF
    For nonrelativistic Hamiltonians which are shape invariant, analytic expressions for the eigenvalues and eigenvectors can be derived using the well known method of supersymmetric quantum mechanics. Most of these Hamiltonians also possess spectrum generating algebras and are hence solvable by an independent group theoretic method. In this paper, we demonstrate the equivalence of the two methods of solution by developing an algebraic framework for shape invariant Hamiltonians with a general change of parameters, which involves nonlinear extensions of Lie algebras.Comment: 12 pages, 2 figure

    Method for Generating Additive Shape Invariant Potentials from an Euler Equation

    Get PDF
    In the supersymmetric quantum mechanics formalism, the shape invariance condition provides a sufficient constraint to make a quantum mechanical problem solvable; i.e., we can determine its eigenvalues and eigenfunctions algebraically. Since shape invariance relates superpotentials and their derivatives at two different values of the parameter aa, it is a non-local condition in the coordinate-parameter (x,a)(x, a) space. We transform the shape invariance condition for additive shape invariant superpotentials into two local partial differential equations. One of these equations is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow. The second equation provides the constraint that helps us determine unique solutions. We solve these equations to generate the set of all known ℏ\hbar-independent shape invariant superpotentials and show that there are no others. We then develop an algorithm for generating additive shape invariant superpotentials including those that depend on ℏ\hbar explicitly, and derive a new ℏ\hbar-dependent superpotential by expanding a Scarf superpotential.Comment: 1 figure, 4 tables, 18 page

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    On-site bundled rapid HIV/HCV testing in substance use disorder treatment programs: study protocol for a hybrid design randomized controlled trial

    Get PDF
    Background More than 1.2 million people in the United States are living with human immunodeficiency virus (HIV), and 3.2 million are living with hepatitis C virus (HCV). An estimated 25 % of persons living with HIV also have HCV. It is therefore of great public health importance to ensure the prompt diagnosis of both HIV and HCV in populations that have the highest prevalence of both infections, including individuals with substance use disorders (SUD). Methods/design In this theory-driven, efficacy-effectiveness-implementation hybrid study, we will develop and test an on-site bundled rapid HIV/HCV testing intervention for SUD treatment programs. Its aim is to increase the receipt of HIV and HCV test results among SUD treatment patients. Using a rigorous process involving patients, providers, and program managers, we will incorporate rapid HCV testing into evidence-based HIV testing and linkage to care interventions. We will then test, in a randomized controlled trial, the extent to which this bundled rapid HIV/HCV testing approach increases receipt of HIV and HCV test results. Lastly, we will conduct formative research to understand the barriers to, and facilitators of, the adoption, implementation, and sustainability of the bundled rapid testing strategy in SUD treatment programs. Discussion Novel approaches that effectively integrate on-site rapid HIV and rapid HCV testing are needed to address both the HIV and HCV epidemics. If feasible and efficacious, bundled rapid HIV/HCV testing may offer a scalable, potentially cost-effective approach to testing high-risk populations, such as patients of SUD treatment programs. It may ultimately lead to improved linkage to care and progress through the HIV and HCV care and treatment cascades. Trial registration ClinicalTrials.gov: NCT02355080. (30 January 2015

    SEMA4D compromises blood–brain barrier, activates microglia, and inhibits remyelination in neurodegenerative disease

    Get PDF
    AbstractMultiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by immune cell infiltration of CNS, blood–brain barrier (BBB) breakdown, localized myelin destruction, and progressive neuronal degeneration. There exists a significant need to identify novel therapeutic targets and strategies that effectively and safely disrupt and even reverse disease pathophysiology. Signaling cascades initiated by semaphorin 4D (SEMA4D) induce glial activation, neuronal process collapse, inhibit migration and differentiation of oligodendrocyte precursor cells (OPCs), and disrupt endothelial tight junctions forming the BBB. To target SEMA4D, we generated a monoclonal antibody that recognizes mouse, rat, monkey and human SEMA4D with high affinity and blocks interaction between SEMA4D and its cognate receptors. In vitro, anti-SEMA4D reverses the inhibitory effects of recombinant SEMA4D on OPC survival and differentiation. In vivo, anti-SEMA4D significantly attenuates experimental autoimmune encephalomyelitis in multiple rodent models by preserving BBB integrity and axonal myelination and can be shown to promote migration of OPC to the site of lesions and improve myelin status following chemically-induced demyelination. Our study underscores SEMA4D as a key factor in CNS disease and supports the further development of antibody-based inhibition of SEMA4D as a novel therapeutic strategy for MS and other neurologic diseases with evidence of demyelination and/or compromise to the neurovascular unit
    • 

    corecore