368 research outputs found

    Proposed power transmission lines in Cambodia constitute a significant new threat to the largest population of Bengal florican Houbaropsis bengalensis

    Get PDF
    The remaining Indochina population of the Critically Endangered Bengal florican Houbaropsis bengalensis breeds in the floodplain of Cambodia’s Tonle Sap Lake. The population has declined substantially but survival rates have not been published previously. Survival could potentially be reduced by the planned construction of high-tension power transmission lines that may begin in 2016. Using data from 17 individuals monitored by satellite transmitters over 4 years we estimated the annual adult survival rate to be 89.9% (95% CI 82.2–97.6%), which is comparable to that of other bustards. Interrogation of movement paths revealed that for the 13 individuals for which we had sufficient data for non-breeding seasons, all annual migration routes between breeding and non-breeding areas crossed the proposed route of the transmission line. The route also impinged on the margins of one important and one minor breeding concentration. A review of bustard collision rates confirmed the vulnerability of bustards to power lines, and the proposed development therefore presents an additional threat to the future of this species in Indochina

    Natural gamma-ray spectroscopy (NGS) as a proxy for the distribution of clay minerals and bitumen in the Cretaceous McMurray Formation, Alberta, Canada

    Get PDF
    Detailed examination of the mineralogy of the Cretaceous McMurray Formation within a facies framework is used to assess the use of natural gamma-ray spectroscopy (NGS) and a pulsed neutron generator (PNG) tool in delineating variation in clay mineral and bitumen contents. Characterization of the mixed-layer (interstratified) clay phases in the McMurray Formation provides an improved understanding of clay interaction in bitumen processing and tailings settling behavior, important for mine planning and tailings remediation schemes. Mineral diversity in the McMurray Formation was determined on facies attributed samples using whole rock X-ray diffraction (XRD), cation exchange capacity (CEC) measurements, elemental analysis (XRF), clay size fraction (<2 mu m) XRD analysis, reflected light microscopy, and cryogenic-scanning electron microscopy (cryo-SEM). Kaolinite was ubiquitous in the entire McMurray Formation with lower and middle McMurray Formation sediments also containing mixed-layered illite-smectite (I-S) with a low expandability approximate to 20-30%. Upper McMurray Formation sediments by contrast had higher expandability (approximate to 60-70%). In floodplain sediments of the lower McMurray Formation an additional clay mineral was quantified as a kaolinite-expandable mixed-layer (clay) mineral. The associated CEC values of this mineral are 10 times the baseline for the McMurray Formation. NGS spectra from cores showed that yields of potassium (K), uranium (U), and thorium (Th) had distinct facies associations, correlated with a clay mineral signature. The resultant indicator is capable of highlighting zones within an oil sands ore body that are empirically known, by industry, to process poorly through extraction plants. A bitumen indicator from the carbon yield derived from a PNG logging tool assesses bitumen content. NGS and PNG allow a full assessment of clay mineral (fines) and bitumen profiles, with the future prospect that these techniques could be used to assess ore and tailings behavior in near-real time

    A Synthesis of the Effects of Cheatgrass Invasion on US Great Basin Carbon Storage

    Get PDF
    Non-native, invasive Bromus tectorum (cheatgrass) is pervasive in sagebrush ecosystems in the Great Basin ecoregion of the western United States, competing with native plants and promoting more frequent fires. As a result, cheatgrass invasion likely alters carbon (C) storage in the region. Many studies have measured C pools in one or more common vegetation types: native sagebrush, invaded sagebrush and cheatgrass-dominated (often burned) sites, but these results have yet to be synthesized. We performed a literature review to identify studies assessing the consequences of invasion on C storage in above-ground biomass (AGB), below-ground biomass (BGB), litter, organic soil and total soil. We identified 41 articles containing 386 unique studies and estimated C storage across pools and vegetation types. We used linear mixed models to identify the main predictors of C storage. We found consistent declines in biomass C with invasion: AGB C was 55% lower in cheatgrass (40 ± 4 g C/m2) than native sagebrush (89 ± 27 g C/m2) and BGB C was 62% lower in cheatgrass (90 ± 17 g C/m2) than native sagebrush (238 ± 60 g C/m2). In contrast, litter C was \u3e4× higher in cheatgrass (154 ± 12 g C/m2) than native sagebrush (32 ± 12 g C/m2). Soil organic C (SOC) in the top 10 cm was significantly higher in cheatgrass than in native or invaded sagebrush. SOC below 20 cm was significantly related to the time since most recent fire and losses were observed in deep SOC in cheatgrass \u3e5 years after a fire. There were no significant changes in total soil C across vegetation types. Synthesis and applications. Cheatgrass invasion decreases biodiversity and rangeland productivity and alters fire regimes. Our findings indicate cheatgrass invasion also results in persistent biomass carbon (C) losses that occur with sagebrush replacement. We estimate that conversion from native sagebrush to cheatgrass leads to a net reduction of C storage in biomass and litter of 76 g C/m2, or 16 Tg C across the Great Basin without management practices like native sagebrush restoration or cheatgrass removal

    Conserving a globally threatened species in a semi-natural, agrarian landscape

    Get PDF
    Agriculture threatens biodiversity across the tropics, particularly in semi-natural grassland landscapes, where human populations are high, habitat is easily converted and agriculture is prone to intensification. Over the last 20 years intensive, commercial Dry Season Rice (DSR) cultivation has emerged as the dominant threat to the Bengal florican (Houbaropsis bengalensis), a globally threatened bustard that breeds in the seasonally inundated grasslands of central Cambodia. Whilst florican have been extensively monitored for 10 years, no socio-economic research has yet been undertaken to understand how local livelihood activities interact with florican. We conducted household questionnaires and focus groups in 21 villages in the Northern Tonle Sap Conservation Landscape (NTSCL) to gather information on household demographics, rice farming and bird hunting in protected and unprotected areas of florican breeding habitat. We identified a significant increase in DSR adoption by local communities since 2005. DSR cultivation was strongly associated with agro-chemical use and DSR fields directly overlapped with breeding season habitat for florican, reducing habitat availability throughout breeding season. We identified a low, but significant level of bird hunting in grassland households (8%) and revealed a demand for wild bird meat amongst local communities. Our findings suggest an urgent need for conservation interventions in unprotected farmland and emphasize the role of enforcement and community engagement in improving protection within protected areas. We highlight the potential of private sector initiatives such as the Sustainable Rice Platform in reconciling conservation and development for impoverished rural communities

    Inter-Relationship between Testicular Dysgenesis and Leydig Cell Function in the Masculinization Programming Window in the Rat

    Get PDF
    The testicular dysgenesis syndrome (TDS) hypothesis proposes that maldevelopment of the testis, irrespective of cause, leads to malfunction of the somatic (Leydig, Sertoli) cells and consequent downstream TDS disorders. Studies in rats exposed in utero to di(n-butyl) phthalate (DBP) have strongly supported the TDS concept, but so far no direct evidence has been produced that links dysgenesis per se to somatic cell dysfunction, in particular to androgen production/action during the ‘masculinization programming window’ (MPW; e15.5–e18.5). Normal reproductive tract development and anogenital distance (AGD) are programmed within the MPW, and TDS disorders arise because of deficiencies in this programming. However, DBP-induced focal testicular dysgenesis (Leydig cell aggregation, ectopic Sertoli cells, malformed seminiferous cords) is not evident until after the MPW. Therefore, we used AGD as a read-out of androgen exposure in the MPW, and investigated if this measure was related to objectively quantified dysgenesis (Leydig cell aggregation) at e21.5 in male fetuses exposed to vehicle, DBP (500 or 750 mg/kg/day) or the synthetic glucocorticoid dexamethasone (Dex; alone or plus DBP-500) from e15.5–e18.5 (MPW), e13.5–e20.5 or e19.5–e20.5 (late window). Dysgenesis was found only in animals exposed to DBP during the MPW, and was negatively correlated (R2 = −0.5) with AGD at e21.5 and at postnatal day 8, irrespective of treatment period. Dysgenesis was also negatively correlated (R2 = –0.5) with intratesticular testosterone (ITT) at e21.5, but only when treatments in short windows (MPW, late window) were excluded; the same was true for correlation between AGD and ITT. We conclude that AGD, reflecting Leydig cell function solely within the MPW, is strongly related to focal dysgenesis. Our results point to this occurring because of a common early mechanism, targeted by DBP that determines both dysgenesis and early (during the MPW) fetal Leydig cell dysfunction. The findings provide strong validation of the TDS hypothesis

    Proposed Role for COUP-TFII in Regulating Fetal Leydig Cell Steroidogenesis, Perturbation of Which Leads to Masculinization Disorders in Rodents

    Get PDF
    Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ∼3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders
    • …
    corecore