237 research outputs found

    Exchange Diffusion Effect and Euryhalinity in Teleosts

    Full text link

    Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Get PDF
    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes

    Basics of Bose-Einstein Condensation

    Full text link
    The review is devoted to the elucidation of the basic problems arising in the theoretical investigation of systems with Bose-Einstein condensate. Understanding these challenging problems is necessary for the correct description of Bose-condensed systems. The principal problems considered in the review are as follows: (i) What is the relation between Bose-Einstein condensation and global gauge symmetry breaking? (ii) How to resolve the Hohenberg-Martin dilemma of conserving versus gapless theories? (iii) How to describe Bose-condensed systems in strong spatially random potentials? (iv) Whether thermodynamically anomalous fluctuations in Bose systems are admissible? (v) How to create nonground-state condensates? Detailed answers to these questions are given in the review. As examples of nonequilibrium condensates, three cases are described: coherent modes, turbulent superfluids, and heterophase fluids.Comment: Review articl

    Microscopical methods for the localization of Na + , K + -ATPase

    Full text link
    Na + , K + -ATPase plays a central role in the ionic and osmotic homeostasis of cells and in the movements of electrolytes and water across epithelial boundaries. Microscopic localization of the enzyme is, therefore, of crucial importance in establishing the subcellular routes of electrolyte flow across structurally complex and functionally polarized epithelia. Recently developed approaches to the localization of Na + , K + -ATPase are reviewed. These methods rely on different properties of the enzyme and encompass cytochemical localization of the K + -dependent nitrophenylphosphatase component of the enzyme, autoradiographic localization of tritiated ouabain binding sites, and immunocytochemical localization of the holoenzyme and of its catalytic subunit. The rationales for each of these techniques are outlined as are the critieria that have been established to validate each method. The observed localization of Na + , K + -ATPase in various tissues is discussed, particularly as it relates to putative and hypothetical mechanisms that are currently thought to mediate reabsorptive and secretory electrolyte transport.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42850/1/10735_2005_Article_BF01005056.pd

    Effects of adaptation to sea water, 170% sea water and to fresh water on activities and subcellular distribution of branchial Na + −K + -ATPase, low- and high affinity Ca ++ -ATPase, and ouabain-insensitive ATPase in Gillichthys mirabilis

    Full text link
    1. Branchial activities of Na + −K + -ATPase, ouabain-insensitive ATPase, (Mg ++ -ATPase) and Ca ++ -ATPase were measured in Gillichthys mirabilis after adaptation to salinities ranging from 170% SW to FW. Stabilities of these activities against freezing and deoxycholate solubilization and the temperature-dependence of activity rates were also investigated. Subcellular distribution and some kinetic properties of these activities, and of SDH were compared in branchial tissues of fish adapted to 170% SW and to FW.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47126/1/360_2004_Article_BF00782593.pd
    corecore