415 research outputs found

    What is the maximum rate at which entropy of a string can increase?

    Full text link
    According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.Comment: 11 pages, no figures; formulas (18), (20) are corrected (the quantum constant is added), a point concerning a relation between the Hawking and Hagedorn temperatures is corrected, conclusions unchanged; accepted by Physical Review D for publicatio

    Lattice Green Function (at 0) for the 4d Hypercubic Lattice

    Full text link
    The generating function for recurrent Polya walks on the four dimensional hypercubic lattice is expressed as a Kampe-de-Feriet function. Various properties of the associated walks are enumerated.Comment: latex, 5 pages, Res. Report 1

    Existence of positive representations for complex weights

    Full text link
    The necessity of computing integrals with complex weights over manifolds with a large number of dimensions, e.g., in some field theoretical settings, poses a problem for the use of Monte Carlo techniques. Here it is shown that very general complex weight functions P(x) on R^d can be represented by real and positive weights p(z) on C^d, in the sense that for any observable f, _P = _p, f(z) being the analytical extension of f(x). The construction is extended to arbitrary compact Lie groups.Comment: 9 pages, no figures. To appear in J.Phys.

    Scaling of the atmosphere of self-avoiding walks

    Full text link
    The number of free sites next to the end of a self-avoiding walk is known as the atmosphere. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor

    Self-avoiding walks crossing a square

    Full text link
    We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at (L,L)(L, L), and are entirely contained in the square [0,L]×[0,L][0, L] \times [0, L] on the square lattice Z2{\mathbb Z}^2. The number of distinct walks is known to grow as λL2+o(L2)\lambda^{L^2+o(L^2)}. We estimate λ=1.744550±0.000005\lambda = 1.744550 \pm 0.000005 as well as obtaining strict upper and lower bounds, 1.628<λ<1.782.1.628 < \lambda < 1.782. We give exact results for the number of SAW of length 2L+2K2L + 2K for K=0,1,2K = 0, 1, 2 and asymptotic results for K=o(L1/3)K = o(L^{1/3}). We also consider the model in which a weight or {\em fugacity} xx is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x<1/μx < 1/\mu the average length of a SAW grows as LL, while for x>1/μx > 1/\mu it grows as L2L^2. Here μ\mu is the growth constant of unconstrained SAW in Z2{\mathbb Z}^2. For x=1/μx = 1/\mu we provide numerical evidence, but no proof, that the average walk length grows as L4/3L^{4/3}. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2)\tau^{L^2+o(L^2)} on the same L×LL \times L lattice. We give precise estimates for τ\tau as well as upper and lower bounds, and prove that τ<λ.\tau < \lambda.Comment: 27 pages, 9 figures. Paper updated and reorganised following refereein

    Exact sampling of self-avoiding paths via discrete Schramm-Loewner evolution

    Full text link
    We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.Comment: 18 pages, 4 figures. Some sections rewritten (including title and abstract), numerical results added, references added. Accepted for publication in J. Stat. Phy

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Polymer-mediated entropic forces between scale-free objects

    Full text link
    The number of configurations of a polymer is reduced in the presence of a barrier or an obstacle. The resulting loss of entropy adds a repulsive component to other forces generated by interaction potentials. When the obstructions are scale invariant shapes (such as cones, wedges, lines or planes) the only relevant length scales are the polymer size R_0 and characteristic separations, severely constraining the functional form of entropic forces. Specifically, we consider a polymer (single strand or star) attached to the tip of a cone, at a separation h from a surface (or another cone). At close proximity, such that h<<R_0, separation is the only remaining relevant scale and the entropic force must take the form F=AkT/h. The amplitude A is universal, and can be related to exponents \eta governing the anomalous scaling of polymer correlations in the presence of obstacles. We use analytical, numerical and epsilon-expansion techniques to compute the exponent \eta for a polymer attached to the tip of the cone (with or without an additional plate or cone) for ideal and self-avoiding polymers. The entropic force is of the order of 0.1 pN at 0.1 micron for a single polymer, and can be increased for a star polymer.Comment: LaTeX, 15 pages, 4 eps figure

    Persistence length of a polyelectrolyte in salty water: a Monte-Carlo study

    Full text link
    We address the long standing problem of the dependence of the electrostatic persistence length lel_e of a flexible polyelectrolyte (PE) on the screening length rsr_s of the solution within the linear Debye-Huckel theory. The standard Odijk, Skolnick and Fixman (OSF) theory suggests lers2l_e \propto r_s^2, while some variational theories and computer simulations suggest lersl_e \propto r_s. In this paper, we use Monte-Carlo simulations to study the conformation of a simple polyelectrolyte. Using four times longer PEs than in previous simulations and refined methods for the treatment of the simulation data, we show that the results are consistent with the OSF dependence lers2l_e \propto r_s^2. The linear charge density of the PE which enters in the coefficient of this dependence is properly renormalized to take into account local fluctuations.Comment: 7 pages, 6 figures. Various corrections in text and reference

    Information Loss in Coarse Graining of Polymer Configurations via Contact Matrices

    Full text link
    Contact matrices provide a coarse grained description of the configuration omega of a linear chain (polymer or random walk) on Z^n: C_{ij}(omega)=1 when the distance between the position of the i-th and j-th step are less than or equal to some distance "a" and C_{ij}(omega)=0 otherwise. We consider models in which polymers of length N have weights corresponding to simple and self-avoiding random walks, SRW and SAW, with "a" the minimal permissible distance. We prove that to leading order in N, the number of matrices equals the number of walks for SRW, but not for SAW. The coarse grained Shannon entropies for SRW agree with the fine grained ones for n <= 2, but differs for n >= 3.Comment: 18 pages, 2 figures, latex2e Main change: the introduction is rewritten in a less formal way with the main results explained in simple term
    corecore