The number of free sites next to the end of a self-avoiding walk is known as
the atmosphere. The average atmosphere can be related to the number of
configurations. Here we study the distribution of atmospheres as a function of
length and how the number of walks of fixed atmosphere scale. Certain bounds on
these numbers can be proved. We use Monte Carlo estimates to verify our
conjectures. Of particular interest are walks that have zero atmosphere, which
are known as trapped. We demonstrate that these walks scale in the same way as
the full set of self-avoiding walks, barring an overall constant factor