391 research outputs found
Room temperature InGaAs/InP distributed feedback laser directly grown on silicon
We report an optically pumped room-temperature O-band DFB laser, based on the buffer-less epitaxial growth of high quality InGaAs/InP waveguides directly on silicon wafer
Carrier lifetime assessment in integrated Ge waveguide devices
Carrier lifetimes in Ge waveguides on Si are deduced from time-resolved pump-probe spectroscopy. For a 1 pm wide Ge waveguide, a lifetime of 1.6 ns is estimated for a carrier density of around 2 x10(19) cm(-3)
Extraction of carrier lifetime in Ge waveguides using pump probe spectroscopy
Carrier lifetimes in Ge-on-Si waveguides are deduced using time-resolved infrared transmission pump-probe spectroscopy. Dynamics of pump-induced excess carriers generated in waveguides with varying Ge thickness and width is probed using a CW laser. The lifetimes of these excess carriers strongly depend on the thickness and width of the waveguide due to defect assisted surface recombination. Interface recombination velocities of 0.975 x 10(4) cm/s and 1.45 x 10(4) cm/s were extracted for the Ge/Si and the Ge/SiO2 interfaces, respectively. Published by AIP Publishing
Low-power, low-penalty, flip-chip integrated, 10Gb/s ring-based 1V CMOS photonics transmitter
Modulation with 7.5dB transmitter penalty is demonstrated from a novel 1.5Vpp differential CMOS driver flip-chip integrated with a Si ring modulator, consuming 350fJ/bit from a single 1V supply at bit rates up to 10Gb/s
Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide
A compact wavelength-tunable 10-Gb/s silicon racetrack modulator with integrated thermo-optic heater is demonstrated by using a waveguide with an asymmetric cross section, combining the compact footprint of microdisk modulators with the design simplicity of regular racetrack or ring modulators. The outer perimeter of the asymmetric racetrack modulator is fully etched to maximize optical confinement, and the inner waveguide edge is shallowly etched to maintain an electrically conductive path to the embedded p-n diode and to control the propagation of the asymmetric optical mode and its coupling to the bus waveguide. The resistive heating elements based on highly doped Si strips are implemented at the outer edge of the modulator for thermo-optic control. The asymmetric modulators can be fabricated along with Si wire waveguides and shallowly etched fiber-grating couplers using a simple process flow involving just two Si-patterning steps. Devices with a bending radius of 10 mu m and a novel "T"-shaped p-n diode layout have been fabricated, and exhibit electro-optic modulation and heater efficiencies of 28 pm/V and 42 pm/mW, respectively. At 10 Gb/s, a stable extinction ratio of 10 dB is demonstrated from a 2V(pp) drive swing, which can be maintained over a wavelength range of 4.6 nm by thermally tuning the modulator. This is equivalent with a temperature variation of about 62 degrees C
- …