352 research outputs found

    The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes

    Get PDF
    Long non-coding (lnc) RNAs are numerous and found throughout the mammalian genome, and many are thought to be involved in the regulation of gene expression. However, the majority remain relatively uncharacterised and of uncertain function making the use of model systems to uncover their mode of action valuable. Imprinted lncRNAs target and recruit epigenetic silencing factors to a cluster of imprinted genes on the same chromosome, making them one of the best characterized lncRNAs for silencing distant genes in cis. In this study we examined silencing of the distant imprinted gene Slc22a3 by the lncRNA Airn in the Igf2r imprinted cluster in mouse. Previously we proposed that imprinted lncRNAs may silence distant imprinted genes by disrupting promoter-enhancer interactions by being transcribed through the enhancer, which we called the enhancer interference hypothesis. Here we tested this hypothesis by first using allele-specific chromosome conformation capture (3C) to detect interactions between the Slc22a3 promoter and the locus of the Airn lncRNA that silences it on the paternal chromosome. In agreement with the model, we found interactions enriched on the maternal allele across the entire Airn gene consistent with multiple enhancer-promoter interactions. Therefore, to test the enhancer interference hypothesis we devised an approach to delete the entire Airn gene. However, the deletion showed that there are no essential enhancers for Slc22a2, Pde10a and Slc22a3 within the Airn gene, strongly indicating that the Airn RNA rather than its transcription is responsible for silencing distant imprinted genes. Furthermore, we found that silent imprinted genes were covered with large blocks of H3K27me3 on the repressed paternal allele. Therefore we propose an alternative hypothesis whereby the chromosome interactions may initially guide the lncRNA to target imprinted promoters and recruit repressive chromatin, and that these interactions are lost once silencing is established

    RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla

    Get PDF
    Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4+3− inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4+3− cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire+ mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80−Aire− mTEC progenitors into CD80+Aire+ mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire+ mTECs and highlight a previously unrecognized role for CD4+3−RANKL+ inducer cells in intrathymic self-tolerance

    RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote.

    Get PDF
    Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that regulator of G protein signaling-14 (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis

    Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy

    Get PDF
    Angiotensin-converting enzyme-2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1-7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II-induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild-type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7-28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1-ERK1/2-Smad3 and NF-κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II-induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1-7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy

    Multiscale Bone Remodelling with Spatial P Systems

    Get PDF
    Many biological phenomena are inherently multiscale, i.e. they are characterized by interactions involving different spatial and temporal scales simultaneously. Though several approaches have been proposed to provide "multilayer" models, only Complex Automata, derived from Cellular Automata, naturally embed spatial information and realize multiscaling with well-established inter-scale integration schemas. Spatial P systems, a variant of P systems in which a more geometric concept of space has been added, have several characteristics in common with Cellular Automata. We propose such a formalism as a basis to rephrase the Complex Automata multiscaling approach and, in this perspective, provide a 2-scale Spatial P system describing bone remodelling. The proposed model not only results to be highly faithful and expressive in a multiscale scenario, but also highlights the need of a deep and formal expressiveness study involving Complex Automata, Spatial P systems and other promising multiscale approaches, such as our shape-based one already resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Ferritinophagy and ferroptosis in the management of metabolic diseases

    Get PDF
    Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.Peer reviewe

    Preferential Signaling and Induction of Allergy-promoting Lymphokines Upon Weak Stimulation of the High Affinity IgE Receptor on Mast Cells

    Get PDF
    Mast cell degranulation and de novo cytokine production is a consequence of antigen-aggregation of the immunoglobulin E (IgE)-occupied high affinity receptor for IgE (FcɛRI). Herein, we report that lymphokines that promote allergic inflammation, like MCP-1, were potently induced at low antigen (Ag) concentrations or at low receptor occupancy with IgE whereas some that down-regulate this response, like interleukin (IL)-10, required high receptor occupancy. Weak stimulation of mast cells caused minimal degranulation whereas a half-maximal secretory response was observed for chemokines and, with the exception of TNF-α, a weaker cytokine secretory response was observed. The medium from weakly stimulated mast cells elicited a monocyte/macrophage chemotactic response similar to that observed at high receptor occupancy. Weak stimulation also favored the phosphorylation of Gab2 and p38MAPK, while LAT and ERK2 phosphorylation was induced by a stronger stimulus. Gab2-deficient mast cells were severely impaired in chemokine mRNA induction whereas LAT-deficient mast cells showed a more pronounced defect in cytokines. These findings demonstrate that perturbation of small numbers of IgE receptors on mast cells favors certain signals that contribute to a lymphokine response that can mediate allergic inflammation
    • …
    corecore