94 research outputs found

    Effects of surface forces and phonon dissipation in a three-terminal nano relay

    Full text link
    We have performed a theoretical analysis of the operational characteristics of a carbon-nanotube-based three-terminal nanorelay. We show that short range and van der Waals forces have a significant impact on the characteristics of the relay and introduce design constraints. We also investigate the effects of dissipation due to phonon excitation in the drain contact, which changes the switching time scales of the system, decreasing the longest time scale by two orders of magnitude. We show that the nanorelay can be used as a memory element and investigate the dynamics and properties of such a device

    A Carbon Nanotube Based Nanorelay

    Full text link
    We investigate the operational characteristics of a nanorelay based on a conducting carbon nanotube placed on a terrace in a silicon substrate. The nanorelay is a three terminal device that acts as a switch in the GHz regime. Potential applications include logic devices, memory elements, pulse generators, and current or voltage amplifiers.Comment: 4 pages, 3 figure

    Many-body interactions in a quantum wire in the integer quantum Hall regime: suppression of exchange-enhanced g factor

    Full text link
    The collapse of Hall gaps in the integer quantum Hall liquid in a quantum wire is investigated. Motivated by recent experiment [Pallecchi et al. PRB 65, 125303 (2002)] previous approaches are extended to treat confinement effects and the exchanged enhanced g-factor in quantum wires. Two scenarios for the collapse of the ν=1\nu =1 state are discussed. In the first one the ν=1\nu =1 state becomes unstable at Bcr(1)B_{cr}^{(1)}, due to the exchange interaction and correlation effects, coming from the edge-states screening. In the second scenario, a transition to the ν=2\nu =2 state occurs at Bcr(2)B_{cr}^{(2)}, with a smaller effective channel width, caused by the redistribution of the charge density. This effect turns the Hartree interaction essential in calculating the total energy and changes Bcr(2)B_{cr}^{(2)} drastically. In both scenarios, the exchange enhanced g-factor is suppressed for magnetic fields lower than BcrB_{cr}. Phase diagrams for the Hall gap collapse are determined. The critical fields, activation energy, and optical gg-factor obtained are compared with experiments. Within the accuracy of the available data, the first scenario is most probable to be realized.Comment: 11 pages, 10 figure

    Interplay of Coulomb blockade and Aharonov-Bohm resonances in a Luttinger liquid

    Full text link
    We consider a ring of strongly interacting electrons connected to two external leads by tunnel junctions. By studying the positions of conductance resonances as a function of gate voltage and magnetic flux the interaction parameter gg can be determined experimentally. For a finite ring the minimum conductance is strongly influenced by device geometry and electron-electron interactions. In particular, if the tunnel junctions are close to one another the interaction-related orthogonality catastrophe is suppressed and the valley current is unexpectedly large.Comment: 10 page

    Ensemble density-functional approach to charge-spin textures in inhomogeneous quantum Hall systems

    Get PDF
    We extend our ensemble density-functional approach to quantum Hall systems to include noncollinear spins to study charge-spin textures in inhomogeneous quantum Hall systems. We have studied the edge reconstruction in quantum dots at unit bulk filling factor and at 1/3 bulk filling factor as a function of the stiffness of an external confining potential. For soft enough edges, these systems reconstruct to a state in which the electron spins rotate gently as the edge is approached, with a nontrivial spin-charge texture at the edge of the system

    Mechanical cat states in graphene resonators

    Get PDF
    We study the quantum dynamics of a symmetric nanomechanical graphene resonator with degenerate flexural modes. Applying voltage pulses to two back gates, flexural vibrations of the membrane can be selectively actuated and manipulated. For graphene, nonlinear response becomes important already for amplitudes comparable to the magnitude of zero point fluctuations. We show, using analytical and numerical methods, that this allows for creation of cat-like superpositions of coherent states as well as superpositions of coherent cat-like non-product states.Comment: 4 pages, 3 figure

    Parametric resonances in electrostatically interacting carbon nanotube arrays

    Get PDF
    We study, numerically and analytically, a model of a one-dimensional array of carbon nanotube resonators in a two-terminal configuration. The system is brought into resonance upon application of an AC-signal superimposed on a DC-bias voltage. When the tubes in the array are close to each other, electrostatic interactions between tubes become important for the array dynamics. We show that both transverse and longitudinal parametric resonances can be excited in addition to primary resonances. The intertube electrostatic interactions couple modes in orthogonal directions and affect the mode stability.Comment: 11 pages, 12 figures, RevTeX

    Fractional Quantum Hall States in Narrow Channels

    Full text link
    A model system is considered where two dimensional electrons are confined by a harmonic potential in one direction, and are free in the other direction. Ground state in strong magnetic fields is investigated through numerical diagonalization of the Hamiltonian. It is shown that the fractional quantum Hall states are realized even in the presence of the external potential under suitable conditions, and a phase diagram is obtained.Comment: 8 pages, 2 figures (not included

    Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions

    Full text link
    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunneling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behavior compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex
    • …
    corecore