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Ensemble density-functional approach to charge-spin textures
in inhomogeneous quantum Hall systems

O. Heinoneft
Department of Physics, University of Central Florida, Florida 32816-2385

J. M. Kinaret
Department of Applied Physics, @borg University, S-412 96 Geborg, Sweden
and Chalmers University of Technology, S-412 98eBorg, Sweden

M. D. Johnson
Department of Physics, University of Central Florida, Florida 32816-2385
(Received 11 February 1998; revised manuscript received 7 Octobe) 1998

We extend our ensemble density-functional approach to quantum Hall systems to include noncollinear spins
to study charge-spin textures in inhomogeneous quantum Hall systems. We have studied the edge reconstruc-
tion in quantum dots at unit bulk filling factor and at 1/3 bulk filling factor as a function of the stiffness of an
external confining potential. For soft enough edges, these systems reconstruct to a state in which the electron
spins rotate gently as the edge is approached, with a nontrivial spin-charge texture at the edge of the system.
[S0163-182699)11411-3

I. INTRODUCTION This may radically alter our understanding of edges in QHE
systems, and, concomitantly, our interpretations of experi-
It has recently become clear that the spin degree of freements that probe the gapless edge modes. This is at the
dom plays a significant role near ferromagnetic fillings in thepresent best understood for edgesiot1l systems. One
quantum Hall effec{QHE).1~3 This is because of the low question we wish to address here is whether similar charge-
ratio of the Zeeman energi,=g* ugB to the Coulomb Spin textures can occur at the edges of systems in regimes of
energyEc=e?/(eglg). Here,g* is the Landeg factor, ug ~ the ferromagnetic fractional quantum Hall effe@tQHE)
the Bohr magnetorB the applied magnetic field strengit, ~ (Such asv=1/3), where not just electron exchange but also
the static dielectric constant, ahg= \%c/eB the magnetic COrrelations are important. _
length. For GaAs systems, the low values of the Lafiadéor W? have previously o_IeveIope_:d an ensemble density-
. ) ~ functional approach for spin-polarized systeths>and sub-
and of the electron effective mass® conspire to mak@  gaquently generalized that approach to include the electron
=Ez/Ec~Ez/(hw)=0.02 for fields in the range of a few gpin put with the spin quantization axis constrained to be
to approximately 10 T. Herep.=eB/(m*c) is the cyclo-  parallel to the external magnetic fieltiwe present here a
tron frequency. Nonetheless, single-particle spin-flip excitafyrther extension that is able to deal with a rotating spin
tions still cost a large amount of energy, because of the losguantization axis. Advantages of our DFT approach are that
of exchange energy associated with a spin flip. This meanig includes electron interactions beyond exchange, and that it
that the spin degree of freedom is controlled by the interelecean be applied to large inhomogeneous fractional QHE sys-
tron Coulomb energy, and not by the Zeeman energy. Ontgems. This makes our ensemble spin DFT approach the only
consequence is that if a single spin is reversed, it becomesvailable method that can be applied to general inhomoge-
energetically favorable for the system to smoothly rotate thaveous QHE systems, spanning regimes from the FQHE to
magnetization direction to restore it over some distance fronthe semiclassical, and which includes the spin degree of free-
the reversed spin. Due to the connection between flux andom and Landau-level mixing. We have used this approach
charge density in incompressible ferromagnetic QHE groundo study the edge reconstruction of circularly symmetric
states, such spin textures also acquire a charge density, agdantum dots. Our results show that as the edge confinement
the resulting spin-charge textures are commonly calleds softened, the system goes from a spin-polarized sharp edge
“skyrmions.” (More accurately, skyrmions are the particular to a softer edge with a nontrivial spin texture, in agreement
type of spin-charge textures that show up in certain conwith results obtained by other groups using the Hartree-Fock
tinuum models, such as the nonlinearmodel?) There is  approximation (at integer filling or field-theoretical
now ample theoreticaP® and experimental wofk®suggest- models!® A new result here is to show how the reconstruc-
ing that such skyrmions are indeed the low-energy chargetion to a spin-charge textured edge can also happen for
excitations, at least near filling facter=1. This is, for ex- FQHE systems.
ample, manifested in the rapid destruction of the ground- This paper is organized as follows. In Sec. Il, we present
state polarization observed experimentalig the filling fac- the general ensemble density-functional theory for noncol-
tor is varied away from unity. Recent theoretical Widfk®  linear spins. Section IIl presents some technical details of the
has also indicated that the edge reconstruction of ferromagheory, including an extension of previously used exchange-
netic QHE systems may acquire nontrivial spin textui@s correlation energies for QHE systems to include both higher
charge-density wavgsas the edge confinement is softened.Landau levels and electron spin. In Sec. IV we present re-
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sults from numerical calculations of quantum dots at unitto pay is to introduce local spin rotation angléér) and
bulk filling factor and at 1/3 bulk filling factor. Finally, Sec. ¢(r), which complicates the KS equations. This approach

V contains conclusions and a discussion. has given good results in apglications to materials such as
y-Fe?® UsPt,,%* and a-Fe,05.%" It can also give the spin
Il. ENSEMBLE SPIN-DENSITY-FUNCTIONAL THEORY stiffness important in studying spin-charge textures in the
FOR NONCOLLINEAR SPINS QHE. That this can happen in the LDA is not immediately

obvious—in field-theoretical approaches the spin stiffness
In its most general formulation, spin-density-functional enters via a gradient of magnetization, and such gradients are
theory, as developed by von Barth and Hetlimllows for  neglected in the LDA. We will show in Sec. IIl that the LDA
noncollinear spins. This is based on a generalization of thgoes give a spin stiffness, although formally its origin ap-
Hohenberg-Kohtf theorem in which the electron density pears a bit different. _ .
n(r) is replaced by the single-particle density matrix We now proceed to review the LDA approach of ter
(1Y =(0| B (1) o (1)]0), where 1, (r) (#1(r)) is the et al™ Sticht, Hak, and Kibler* We begin by writing the
Po,o oy JraN SV T 4 o ground-state energy as a functional of the single-particle den-
usual_ electron a_n_n|h|lat|o(crea'_uor) operator for an electrqn sity matrix for a two-dimensional system in a constant exter-
of spin o at positionr, and|0) is the ground state. We will

use notations in whicloe=*1 oro=1,], with up spin () nal magnetic field3=Bz
corresponding ta-= — 1. A computationally useful approach Elpso(N]1=Tpo,o(1)]

is then constructed in the usual way by considering an aux-

iliary noninteracting system in some effective external poten- + f N(F) Ve ) d3r
tial v¢(r) chosen so that this system has the same ground-

state single-particle density matgx. .. (r) as the interacting
system at hand. A variational principle associated with the +g* ugB X, ‘75&0’[ P (1)d?r
generalized Hohenberg-Kohn theorem then vyields Kohn- a0
Sham(KS) equations® which now include spin-dependent 1
exchange-correlation potentials +§f f n(rvy(r—r")n(r’)d?r d?r’
Vi o (1) = OExd po,o ()] . n +_Exc[p(,,.g,(r.)]. | (2)_
Opg,q () Here, T p,. . (r)] is the kinetic energy functional of nonin-

. ) . teracting electrons, which in our case includes the external
A difficulty is that one does not usually have reliable ap-magnetic field B. The particle density is n(r)

proximations for the exchange-correlation potentials—1r , (), v,(r) is the Hartree potential, and
Vicoor(F), Not even in the local-density approximation g [, ' (r)] is the exchange-correlation energy, which de-
(LDA). Consequently, the density matrix is usually assumegends parametrically on the magnetic fidor ease of nota-
to be diagonal for alt, which means that the direction of the tion we omit this parametric dependehctsing the varia-
magnetization is assumed to be constant, and that direction ifonal principle of the Hohenberg-Kohn theorem, HA)
then conveniently chosen as the spin quantization axis. Thutgads to Kohn-Sham equations of the form

only up- and down-spin densities enter into the KS equa- A 1 0

tions, and for the LDA(or extensions including generalized | T(r)i+ V()i + vey(r)l + gugB )

gradient approximations one only needs to know the 0 -1
exchange-correlation enerdy,(n,&) of a uniform system . A

of density n=n,+n, and polarizationé=(n,+n)/(n, Vie1(r) VXC'”(r)) (zﬂ.,T(r)):Ei(w.,T(r))
—n;). There exist now very accurate calculations of Ve, 1 1(r) Ve, (1)) Vi (1) i (1)

E,(n,&) for two- and three-dimensional electron gases (3)
zero magnetic field?%?! .

However, the approximation of constant magnetizationfor single-particle spinorsp;= (¢ ¢,4;) (here, 1 is the
direction obviously does not work in systems for which it is 2% 2 identity matriy. The problem with Eq(3) is the spin-
known that the magnetization direction changes in spacedependent exchange-correlation poterMal,5(r). The ap-
Examples of such systems are )m?2? y-Fe2® UyPt,,2*  proach taken by Kinler and co-workers is to locally find a
and QHE systems near unit filling. For such systems the fullepresentation in which the single-particle density matrix is
single-particle density matrix has to be used, and the probdiagonal with diagonal elements,(r) andn (r). We can
lem then arises as to how one should construct a LDA. Wéhen just use the chain rule and write
will here follow an approach developed by Her et al.?® SEdn;.n] an,  SE.n;.n ] an
Sticht, Hak, and Kibler?? and Sandratskii® and extend Vicap= e 1 ! e 1) L
their approach to an ensemble DFT appropriate for QHE
systems. The basic idea is to locally rotate the spin quantiThe advantage is that wean find approximations for
zation axis to obtain a representation that locally diagonaldE,./dn, by calculating the ground-state energy di@mo-
izes the single-particle density matrix. The advantage of thigeneoussystem of spin densities;, andn, respectively.
procedure is that in order to construct a LDA, one then onlyThe price we pay is the derivativegn,/dp,; and
needs the exchange-correlation energy as a function ofn,/dp,z, which introduce the local spin rotation angles
spin-up and spin-down densitiésr total density and polar- 6(r) and ¢(r). Note that this method involves a change of
ization), for which approximations exist. The price one hasvariables in the exchange-correlation energy, aoth local

N
5nT (?pa,ﬂ 5I’1l &palg
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rotation of the spinors. Such a rotation would lead to com-and

plicated terms in the kinetic energy, similar to those encoun- 1

tered in a field theory with local gauge transformations. Av(N)=2[0xe (M) ~vxe (1] (12
To actually perform the change of variables, we calculatevith

at each point anSU(2) matrix U(r) that locally diagonal-
izeSp(w/(r): Vyeo= 5EXC[nT(r()r)nl(r)] (13)
> Ua,a(1) oo (NUL, 4(1)=84,5Na(T), (5)  Inthe KS equation$10) there is a coupling between up- and
o0’ down-spin components, so that in general the KS orbitals are
with n,(r) the eigenvalues gf,, ,(r). We writeU(r) inthe ~ now two-component spinors with both up- and down-spin
standard form, components. Note that in an angular momentum representa-
tion Eqgs.(10) couplez components of orbital angular mo-
e(i/2>¢<r>003@ ef(i/2)¢(r)sin@ mentumL,+m#, with m an integer, and spin angular mo-
2 2 mentumS,= 3% to (L,,S,= —3%). This coupling will also
U(r)= ‘ 6(r) , or) |’ 6) provide the mechanism for spin-charge textures in QHE sys-
—elif2e(r) sin—— e~ (12e(n) CoS—— tems in the same way as the Hartree-Fock equations by Fer-
tig et al. do? In the LDA, we write
whereg(r) andé(r) are the local azimuthal and polar angles
of the magnetization density relative to a fixed coordinate Exc=f d’r n(r)e,d v(r),&(r)], (14
system. The requirement that(r) diagonalizesp,, ,(r)
then yields where e,J v,£] is the exchange-correlation energy per par-
Imp; (1) ticle in an infinite, homogeneous system of filling factor
tan o(r)=— R— (7) and polarizatioré=(v;—v)/n, and(r) :277I§n(r) is the
epy.1(n) density expressed as local fiIIing factor. Then
and P
2{[Rep; (N]2+[Imp; (r)]2Y2 Ve, 1 (N =] 7= —(1 5) [foc(V &1,
tan 6(r)= ’ ’ , (8
[pg,1(N)=py, (1] 1 J (15
with Re(z) and Im(z) denoting the real and imaginary parts Uy, (1) = . ;(1+ §)ﬁ—§ [vex(v, )],
of a complex numbez. Equation(5) gives
with the derivatives evaluated at=v(r) and £é=£&(r), so
o) o) that
n(r=p; CO§T+5PT’l(r)e"P<”sm (r)
UO(r):Uext(r)+vH(r)+ [VGXC(V §1-¢—= GXC(V £,
e e 0 dé
+3p7,(r)e sind(r)+p,, si - (16)
Av(r)= gfxc(V ).

_ . 0(r) 1 io(r) o
n(ND=p1s ssz—zpm(r)e*” sin 6(r) Equations(10) with v,(r) andAv(r) given by Eq.(16) are

the KS equations that result from the approach bybl&u

o(r) 9 ¢ al?® and Sticht, Hok, and Kibler?? Here they are written
in a form appropriate for the QHE. We now make the exten-
sion to an ensemble DFT by introducing occupation numbers

Equation (9) then gives us a representation in which . for each spinoi, and by taking

po.o (1) is locally diagonal, so that in the LDA we only need

to know the exchange-correlation eneigy(v,¢) as a func- _ gtnate

tion of total density and polarization, or, equivalenty,and Po.o(r) Z B (0)SgSyr (1), an

By using theSU(2) transformation, and by expressing
the single-particle density matrix in terms of occupied KSWhereS, projects out ther component of the spinag(r).

—3pT (e Wsino(r)+p;, lcos2

orbitals ¢; ,(r) we can then write the KS equations as In ordinary DFT the occupanciefs are zero or one. In our
’ ensemble DFT calculations, we obtain fractional occupation
Tsthi (1) +vo(r) i (1) +Av(r)[cos 0(r) i 4(r) numbers using a method of running averages described in
. H 4,15
Tsin 0Ny (1] =€ our earlier work!
Tsthi, (1) +vo(r) g (1) +Av(r)[sin 8(r)e "y (1) lll. FORMAL RESULTS AND NUMERICAL
APPROXIMATIONS
—cosO(r) g (N]=edh |, (10) .
for each single-particle spinorsyi(r)=[4: (r), ¢ ,(r)]. The usefulness of the LDA equatiofi®0), (16), and(17)

ultimately depends on the availability of good approxima-
tions for €,.(v,£), the exchange-correlation energy per par-
Vo(r)=vexlr) tou(r)+ %[UXC’T(I’)'FUXCJ(I')], (11 ticle of a homogeneous system of filling facterand polar-

Here,
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ization £&. We have previously described our first attempt at 0.0 - - y
constructing an approximate energy surface for the QHE. In Fit
this section, we will describe in some detail our work to ¢ Numerical data
improve on that approximation. In particular, we have ex- 02
tended the exchange-correlation energy to the ramgé
and also better incorporated electron-hole symmetry. =
We start, as in our earlier work, by approximating & o
(v, §) as N\E
el 1.6)= M)+ 6O +e(v). (1§ B 08T
=
Here,€;(v) is a smooth interpolation formula for the ground =
state energy of polarized QHE systems(v) gives the 08
cusps at the FQHE fraction§(¢) is an interpolation formula
obtained from considering only exchange in two dimensions, 0 _ . _ . . . _
(1+ §)3/2+(1_ g) 3/2_ 2\/5 (19) 0.0 05 Fi”ing‘l].‘gctorv 15 2.0

f(§)= 2-212 , _ N _
FIG. 1. Exchange-correlation energy vs filling factor for a spin-

and de,(v) is the difference in energy between the fully polarized QHE system. The diamonds are results from numerical
polarized and the completely unpolarizegi<0) system at diagonalizations in the two lowest Landau levels, and the solid line
filling factor ». Some values for this latter quantity can be for »>1 is our analytical fit, Eq(25).
obtained from the literatur®3C and the value forde, (v
=1) will be fixed later in this section using the spin stiff- ticle in Landau leveh=1 at momentunk,=0 and a particle
ness. We then use a spline fit to tie all these values, gf) of momentumk in the lowest Landau levet=0. This en-
together to a continuous function. We found eatfighat the  ergy is (using the Landau gauge
interpolation formula for e;(v) given by Fano and
Ortolan?! together with our approximation fat(») gave 1 2 -
excellent agreement between our DFT approach and numeri-  €1(K)= —J j dr dzr'we_wza)(x_xk) e
cal diagonalization® for small spin-polarized systems. y''B
However, this interpolation formula was given only for e H (X ) Hy(x/1g)
<1. To extend it tov>1, we have performed extensive nu- Xe (WX~ \(r—r')——r
merical diagonalizations for toroidal spin-polarized systems V2 V2
of eight, nine, ten, and eleven particles in the two lowest
Landau level$® The data obtained from these calculations
reveal a cusp in the exchange-correlation energy-atl. ) o
This cusp is due to the fact that the exchange-correlatiofiere,L, is the length of the systerftaken to infinity at the
energy per particle added to the second Landau level, afté&nd of the calculation H, is the nth Hermite polynomial,
the lowest Landau level has filled up, is different from theV(r)=e?(eolr —r’|) the Coulomb interaction, arxi = I3k
exchange-correlation energy per particle for the filled lowesis the centerpoint of the harmonic oscillator of momentum
Landau level. We have confirmed this with analytical calcu-The integrals in Eq(20) can be evaluated to give the result
lations (below), and constructed a simple analytical model to

Xe—(l/ﬂé)xzeiky'e—(1/2@)(x/—xk)z_ (20)

fit the numerical data. Figure 1 depicts the data from the e? _kzlzmkzlé o2 -
numerical diagonalizations and the analytical fit. e1(k)=— 5 —e B Ko(k“l/4) + Ky (K°I5/4)],
We now briefly present the analytical calculation of the y=o (22)

cusp in the exchange-correlation energyvat1 for spin-

pqlarized systems. We will do the calculation in a truncatethereKn is the modified Bessel function of orderWe then
H|'Ibert space, and take the statevatll to be a'SIater deter- finally integrate over all statdsin the lowest Landau level
minant of the lowest Landau level single-particle wave f“nc'zand obtain

tions. This is the exact ground state of the system restricte
to the lowest Landau level, and the interaction energijs

: 1 e?
= Ng&xo(v=1,6=1)= — No/(7/8) (€% €l ), Where N is €= — 2 22)
the number of electrons. Fad¥,+1 particle we consider 2 NV 8elg

only states withN, particles occupying a filled lowest Lan-

dau level plus one particle in the=1 Landau level. The The cusp in ground-state energy:at 1 comes from the fact
lowest-energy state consisting Bf,+ 1 particles is then a that the exchange energy of adding one particle to a system
linear combination of these degenerate Slater determinanwith a full lowest Landau levek, is different from the ex-
with a uniform density. The dirediHartree energy of this change energy per particle in the lowest Landau level. The
state is canceled by a uniform positive background chargeusp gives rise to a discontinuity in the chemical potential at
density. We can calculate the exact energy of the lowesty=1, which we need to evaluate. The chemical potential at
lying state(exact in the reduced Hilbert space used hése  v=1"is —\/7/2e?/(lg), and the chemical potential at
considering the exchange interaction between a single pas=1" is
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JE in the lowest Landau level. The constahtandc then fix the
pu(r=1")= N =E(Ngt+1)—E(Ng) slope and value of the exchange-correlation energy at
elly=1+ =1" and é=1, anda is used to adjust this model to the
=[Ngex(v=1,=1)+¢,] numerical data. Fixing slope and value gives
Nelexc(V:j-ag:l) b:%GXC(V:Lg:l) (26)
and
1 /7 e N
:Gl:—z ga (23) C:_§6XC(V:1,§:1), (27)
. L . . tively. A d fit to th ical data is givenéa
Therefore, the discontinuity in chemical potentialiat 1,£ r:e;pec Vely. A good Tit to the humerica g y
=1is Finally, we consider the exhange-correlation energy at
3 |7 e? =0. When the system is restricted to the lowest Landau
Ap=3 Begls’ (24 level, particle-hole symmetry yields
Since the exchange-correlation potential for a polarized sys”&e(V+é) = Véxc(v=1£6=1)
tem isV,(v)=d[ve,(v,E=1)]/(dv)= u(v) this disconti- =(2=v)&d2—v,(v;—v))(2— )]
nuity also appears in the exchange-correlation potential at
v=1. —(2=v)e(v=14£=1), (28)

In order to construct an exchange-correlation energy Sufynere
face e,.(v,£€) that gives a workable approximation for O
<y<2 and 0<¢=<1 we first construct an analytic approxi- v=vitv>1 (29
mation for the exchange-correlation energyrvatl and¢  and
=1. We use a simple model in which we write
_ VT_ Vl

v—1 c &= (30
e(v—1£6=1)+—+b. (25 nTy

v When the restriction of the system to the lowest Landau level
This model is motivated by the fact that, as a first approxi-is lifted, this symmetry is no longer exact because of inter-
mation, the interaction energy of a system with a full lowestLandau-level quantum fluctuations. However, we assume
Landau level andN, particles in then=1 Landau level is that it is only slightly violated, and construék,.(») so that
approximately equal to the interaction energy of the full low- e,(v, ¢) respects this symmetry §t=0. Using the form Eq.
est Landau level plus the interaction energy\afelectrons  (18) and Eq.(28) at £=0 andv>1 then yields

e(v>1¢=1)=a

[2— v][eic(Z— v)+ eC(Z— V)+ 86, (2—v)]—2(1—v)e(v=1,£6=1)

Sl )= ; —gdm - (3D

for v>1. Furthermore, af=0 the exchange-correlation en- correct helps constraifie,(v=1). We start by considering
ergy per particle has a continuous derivativevatl, which  the total exchange-correlation energy of the system in the
gives LDA,

d(Sex(v)) Exc:f n(r)ed v(r),&(r)]d?r, (33

T =—GXC(V:1,§:1)—5GXC(V:1).

(32) wherev(r) and&(r) are obtained from the local eigenvalues
n.(r) andn (r) of the single-particle density matrfz. We
calculate in the LDA the change in exchange-correlation en-

Equations(18), (19), (25), (31), and(32), together with the ergy of an initially infinite, homogeneous, fully polarized

data points forde,(v) for v<1, then define our exchange- system atv=1 in response to a gentle spin twist. The ap-

correlation energy surface. A F90 subroutine package thailied spin twist changes the local eigenvaluegr) of the
evaluates the exchange-correlation energy and the exchangfingle-particle density matrix, and thugr) and &(r). For
correlation potentials for giverg ,»|) is available from the  systems confined to the lowest Landau level, a spatially
authors. In this package used in our calculations, Wesarying spin twist necessarily results #(r)<1. 34 In the
dropped the terms® for »>1. This is of no consequence in |ocal-density approximation used here this produces a cost in

our calculations presented here in which the total filling faC-exchange correlation energy that, as we show here, causes
tor was never much greater than unity. the spin stiffness. We write

To conclude this section, we show that the LDA does
indeed give a spin stiffness; requiring this stiffness to be v(r)y=1+6v(r), &(r)=1+86&(r). (34
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The change in exhange-correlation energy is tlesth L -

n(r)=v(r)/(2m3)] Es=zpsf [VQ(r)]= d-r. (39
e 1+ 6v(r), 1+ 8&(r)]d?r We obtain from Eqgs(36) and (37)

1 dey

1 AE, ¢ — ——

—EJ ex(1,1)d2r. (35 XU 2w 9€

1
AExczf [E-i- on(r)

f[vsz(r)]z dZr. (39

y=1¢=1

From the work of Mooret al.35 we know that the density BY ¢omparing Egs. (38 and (39 we see thatps
variation is of second order in the gradient of the spin-*(9€x/7€), and it remains to work out the constant of pro-

rotation angle. Furthermore, general symmetry considerport'c.ma“ty' To this enq, we consider a system of spin-
polarized electrons confined to the lowest Landau level. We

ations give . . :
) use the Landau gaugk(r)=(0,Bx,0) in which the single-
O&(r)<[V(r)]%, (36)  particle basis functions are
where Q(r)=zxm(r) is the angle through which the spin aikyg—(122) (-0
density is rotated, andh(r) is a unit vector parallel to the P(X,y) =Ky (X) = ' (40)
local spin density. We then expand, . in powers of V€|, VLVl g
and obtain to second order jF¥ Q)|
where
AExc=f on(r)e(1,)d’r =12k, k=2mn/L,, n=0+1+2,... . (41
1 Jde In the initial state, all single-particle spinors are
+2—f Sv(r) axc dr ger P
™ Vi—1g=1 P(X,y)
. (42
1 J€yc 0
+2—J SE(T) d’r. 37
m & y=1¢=1 We take the spinors of the spin-rotated state to be
The point here is that an LDA in(r) and &(r) contains 0
spatially varying polarizatior¥(r), and this corresponds to cos nd(X,Y)
gradients in the magnetization density according to(B6). 2 (43)

The first two terms on the left-hand side describe a change in Ok

E,. due a change in the density. For the spin twist we are Sin - ak(X,Y)
consideringsn(r) [and Sv(r)] integrates to zero since no

net charge is added to the system. The last term in(&g.  whereAk=2m An/L,, with An afixed integer. This state is
describes the change .. due to a change in the polariza- the rectangular analogue of a rotationally symmetric skyr-
tion. This term gives the spin stiffness. In general, the spirmmion. In order to calculate the exchange-correlation energy
stiffnessp, is defined by the leading term in an expansion ofof this state within the LDA, we then need to find the eigen-

the energy in gradients of the magnetization ar@te values of the single-particle density matrix
|
0k 2 . 0k 0k *
2 cos S [u(xy)| 20 sinzcosy XY Y- ai(xY)
Po,o’ ( r) = ak ak 0k . (44)
2 sing cosy Ui ()i axy) St | axy)?
|
The eigenvalues are then readily obtained as To continue, we will make use of the following results:
1
ak 2 . gk 2 2 = —
Ny (X)= Zk COSZE(ﬁk(X)"'; sz?(ﬁk—Ak Ek: $i(X) 273’
1” Ok 5 bk z 2
=D cof—p2(X)— D, SiP—¢2_ 1 13 1
2 2 k 2 k—Ak _ 2 42 — b_ -
K K Ek (X—X) i (X) 27-rI§ >~ I (46)

+

gk ak 2) 1/2
42 sin;-cosy i(X) bic-ai(X) ] . (45

and also the Taylor expansion
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p)— Ak 22

Di(X) P ak(X) = Py (X) K

PP pi(X)

1
+5 (82—, (47)

The second term on the right-hand side of E4j7) then
vanishes when integrated overThe third term contains

2

2
(Ak)2=( 3 ) (An)?, (48)

y
which vanishes in the thermodynamic limit for fixekin
#0. Therefore, we can approximate

1

iz

Ek ¢k<x>¢k_Ak<x>~; PE(x)=

Next, we assume tha, is slowly varying as a function di.
This means that in expressions such as

6 L g 6(k
Ek cosz?kqsﬁ(x):#f dkCOT()cﬁk(X), (50)

where ¢, (x) as a function ofk is sharply peaked abowkt

=x/13, we can expand to the trigonometric function as a

function of k to second order irk aboutk=x/13. When
integrated ovek, all first-order terms containind6/dk then
vanish. Using Eq(46) andd?6/dk?=1g d?6/(dx?) we ob-
tain, after a little algebra,

|2
B

4

11 11

_EZﬂé_EZW%

da)z

From the definition of the polarizatio&(r) we then finally
have

(52

Inserting this into Eq(37) yields

1 Jdey
4 o9&

AE 1f (de)Zdz (53
= S| |\ 32 r.
xe V:lé:lz dx

By comparing Eq(38) and Eq.(53) we then obtain for the
spin stiffness

B 1 Jdey
Ps™ " am o¢

(54

v=1%=1
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This yields

O€xc( :1):ﬁ_2—ﬁ_e2 ~0 1224—e2
Exct¥ 8 3 elsg  Tels

(57)

As an indicator how good this value is fék,(v=1), we
consider the state at=1,£=0 in an approximation in which
the spin-up and spin-down particles are completely uncorre-
lated. In this case the energy per particle of that state is the
same as the ground-state energy per particle=a,é=1,
which is approximateR} —0.469 e?/(€,l). Neglecting the
correlations between spin-up and spin-down particles should
lead to an overestimate of the energy per particle. This ap-
proximation yields a difference in energy per particle be-
tween v=1£=0 and v=1¢=1 of dJe(v=1)
=0.1577 €?/(eolg). In view of the fact that this is most
likely an overestimate of the energy per particlevat1,£

=0, we can conclude that the valuede(v=1)
=0.12242/(€ylg) obtained from the spin stiffness is very
reasonable. The value,(v=1)=0.1224e%/(€ylg) is the

one we used in our calculations.

IV. EDGE RECONSTRUCTIONS OF QHE DOTS

We have applied the ensemble spin DFT approach to cir-
cularly symmetric QHE dots and studied the edge recon-
structions of such systems as a function of edge stiffness. We
use a model in which the confining potential is supplied by a
uniform positive background charge density. The edge is
modeled by a “graded edge” in which the positive back-
ground charge density goes to zero linearly as a function of
radial coordinater over a distancev. The total integrated
positive charge is fixed and equal to the total electron charge;
this then determines the radial distance at which the positive
charge density starts to decrease. Even though concerns have
been raised that this particular confinement is nongetfatic
is the one that has been studied the most, and we chose it as
a model confinement for comparisons with other work.

It is known from Hartree-Fock calculatiotfof »=1 Hall
bars with a similar graded edge that for a sharp edge (
small enough the electron gas is completely polarized and
its density falls to zero abruptly near the edge. However, as
the edge confinement softens, the electron gas develops an

instability to a spin-textured edge for smaller valuesgof
(the ratio of Zeeman to Coulomb enejgyr a charge-
density wavéh'? for larger values ofg, with the density
modulated along the edge. Both instabilities break the trans-
lational invariance along the edge: in the spin-textured edge

In fact, the calculation is readily generalized to an arbitrarythe spin density is modulated along the edge while the total

spin-polarized filling factow,, so in general we have

__ ﬁ dex(v,€)
Ps™ " an ot

(55

v=vg,6=1

charge density is constant; in the charge-density wave edge
the spin density is constant along the edge while the total
charge density is modulated. For Hall bars at bulk filling
=1/3, an effective field calculatidh (here, Hartree-Fock
calculations are obviously not applicapkdso shows an in-

In our approximation for the exchange-correlation energystapility to a spin-textured edge as the confinement is soft-

we can then fixde,.(v=1) (for which there is no known
value by requiring that the LDA spin stiffness Edq54)
equals the known valdefor the spin stiffness at=1,

1 1 €

= 56
pS 16 1_277 GOIB ( )

ened.

We would expect the analogous instabilities to occur for
the circular dots. For stiff confinements, the electron density
forms a so-called maximum density droplé¥iDD), in
which the electron gas is completely polarized with a filling
factor that is unity in the bulk and that rapidly falls to zero at
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the edggthe MDD is the minimum angular momentum state spin statesy,,, ; with angular momenturz(m+v) to
for a spin-polarized system in the lowest Landau lgves  down-spin stateg/,, | with angular momenturim:

the confinement is softened, the edge should develop a spin-

textured or charge-density wave instability. Indeed, our pre- J cos O(r) o (NAv(r)e 1v$ ndr. (59
vious spin DFT calculation in which the magnetization (1)¢m, ()Av(r) Ymso (D AT (59

direction was constrained to be fixed parallel to the externaJI_hiS counling is of the same form as that in the Hartree-Fock
magnetic field, revealed that the MDD becomes unstable to- piing

wards the formation of a partially polarized edge as the Congquatlons studied first by Fertigt al” However, in the

finement was softened. This gave a variational bovithin \';'iggcrjeg":gﬁkeigﬁggogsirfthee r(;flf-(\jl:/?]gi;lgnglljrcc&uﬁpg)measvc\)/a}i_pro-
the LDA) showing that the spin-polarized edge is not the y . 9 gra, ! :

! . ludes correlation effects within the LDA. Since the spin-
ground state when the confinement is soft. The phase boun(g-

aries of the MDD that we obtained were in good qualitative d::ggnz: eIC:;rJ\IglrI]Tg Ofc ?Qgeé;:]esl’e_aggglae ' dg;gwe?rtgt?i,x ztarr]g
agreement with Hartree-Fock calculations for Hall bi&ral- 9 gle-p Y

] ~ ) T circularly symmetric so that the total density is circularly
though the obtained values gf at which the polarization  gymmetric. We would like to point out that lifting the restric-

was destroyed were much smaller than those from thesn gq (58) allows for the possibility of breaking the circu-
Hartree-Fock calculation for Hall bars. We speculated thajyr symmetry of the charge density, which allows for charge-
this difference is due to the different geometries or edg%ensity waves in addition to spin-charge structures.
confinements. Our results were in rather good agreement \ye have solved the KS equations by expanding the spa-

with numezrical diagonalizations  using  parabolic ia| parts of each spinog;(r) in the single-particle angular
confinement? The calculations presented here support th&nomentum basis functions

argument that the differences were due to the different con-

finements used. 1 n! r2\ .
We have now extended our ensemble DFT calculations to Ymn(r)= 2 n+m)! LR“(T eme, (60)
include spin-textured edges both for the MDD and for 2mlg ' B

=1/3 droplets. Our new results show that when the edg L Lyt Oty n
becomes partially polarized, a spin-textured edge has low pr th? tcygderlcaI gaug?o\(r)—_ ZIB()\% )IZX) tW'th thr}nhi]:
energy than one with constant direction of the spin densityaSS(c)jC'ale lf%gue”e Iin 31n(_)m|a S d € eplgg 0 |

In the calculations presented here, we have only considere[oan au fevel In our calcufations, and up to anguiar mo-

states that do not break cylindrical symmetry of the chargéjentum statesup to 1200 single—particle stajed-or thev_
density, and for which the azimuthal angle of the spin direc-— 1 System we performed calculations of 40 and 70 particles

tion changes at most by along any simple closed path. " @ magnetic field of 3.5 T with the bare Lanégctor g*
This excludes charge-density-wave instabilities and spin texvarying from 0.1 to 1.5 ¢ then varied from about 0.002 to
tures with topological charge greater thare, but imposing 0.036, encompassing experimentally accessible vallée
these symmetries simplifies the calculations a great deal. Fégason for keeping the magnetic field relatively low, but still
example, the Hartree potential is easy to calculate for circuat an experimentally realistic value, was to fully include the
larly symmetric charge densities, but considerably more teeffects of Landau-level mixing typical in experimental sys-
dious if that symmetry is broken. Nevertheless, the calculatem. We performed the calculations for=0,+ 1. The results
tions we have performed satisfy the two most importantcan be summarized as follows: For small valuesapf.e.,
criteria we wanted to establish: to demonstrate the usefulnesiff confinement, the edge is spin polarized. Wéncreases,
of the spin ensemble DFT approach to general QHE fillingsthe v =0 channel becomes partially polarized. However, at
and to establish through a variational boufwithin the  the same value of, thev =1 channel attains a lower energy
LDA) that for softer edges, the spin-polarized edge or arwith a nontrivial spin-charge texture. For the system sizes
edge with constant spin quantization axis has higher energgtudied here, the value ef at which the instability occurred
than a spin-textured system in which the spin quantizations W~7lg. This is in quite good agreement with the Hartree-
axis is tumbling. Fock calculations of Karlhedet all® For a semi-infinite
We start with the ensemble spin KS equations Bd) Hall bar, they found the onset to a charge-spin textured edge
with the potential®o(r) andAv(r) given by Eqs(16), and  occurring at aboutv~7l3—8l in the range ofy from zero
the single-particle density matrix found self-consistently usto about 0.03. As illustrations, Figs. 2 and 3 depict charge
ing Eq.(17). We now make the simplifying assumption that densities and spin rotation angles fwe=8lg and g=1.00.
the polar angled(r) of the spin density is a function of the Thev =0 channekFig. 2 has a small minority-spin density
radial coordinate alon&j(r)=6(r), and that the azimuthal near the edge of the system, in qualitative agreement with
angle(r) is of the form our earlier calculationgthe bump in density at the edge is
o(r)=v (1) (58) characterisic of all confined QHE systems for which the con-
’ fining potential is not macroscopically smontiHowever,
wherev is an integer an@(r) is the azimuthal angle afin ~ the v=1 channel(Fig. 3), which has lower energy, has a
a planar polar coordinate system. In other words, we willlocally (nearly polarized spin density everywhere and a non-
restrict the modulation of the spin density along the edge tarivial spin texture, with the spin rotation angr) rising
have a single Fourier component along the edge. With Edgrom 0 to aboutr/2 at the edge of the system. Note that for
(58) inserted into the expressions E@.0) for vo(r) and a bounded system there is no topological constraint on the
Av(r) the spin-diagonal coupling conserves orbital angularispin rotation angle, as there is in an infinite system where the
momentum, while the spin off-diagonal coupling couples up-Pontryagin index has to be an integer.
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FIG. 2. Local filling factorsv(r), v (r), and »(r)=wv(r) FIG. 4. The local filling factor for they=0 channel of a 40-
+v,(r) in thev=0 channel for a 70-electron dot. The magnetic- electron dot in the FQHE regime. The external magnetic-field
field strength is 3.5 Tg*=1.0, and the edge width iw=38lg. strength is 12 Tg*=1.0, andw=4lg. In this case, the electron
Here, the edge region is only partially polarized with a small system is polarized.
minority-spin density.

. - two is mostly due to finite-size effects in the numerical di-

We hgve also studle_d a FQHE droplet at bulk filling of agonalizations, or our model Eq¢18) and (19) of the
1/3. While we are quite confident about our exchangegychange-correlation energy. We have also performed nu-
correlation energy for spin-polarized FQHE systems, it is N0ty erical diagonalizations of six electrons &t 1/3. For six
clear to us how good it is for. arbitrary polarizati_ons in the electrons, we obtainse,(v=1/3)=0.004 6%2/( eyl 5)—an
FQHE regime. For example, if we use the published valug, rease of almost a factor of three from the four-electron
obtained from four-electrzon numerical d|_agonal|zat?r3rfer result. This clearly shows that the energy per particle at total
dex(v=1/3) of 0'0041729 /(€olg), the spin-stifiness in our gyin zer0 is much more sensitive to system size than the
model is 1.15% 10 "e“/(€olg), compared to the value of gnergy of the polarized ground state. Encouraged by our nu-
9.23<10 “e?/(lg) obtained from hypernetted-chain \herical  results. we  then fixed Se (v=1/3) to
calculations’® It is not clear if the discrepancy between theseq 0136:2/(e,l ) in order to have a simple model that gives a
spin stiffness in agreement with the hypernetted chain calcu-
lations. We performed the calculation with 40 particles and
the four lowest Landau levels, and up to 170 single-particle
angular momentum states, both for the choice of confinement
discussed earlier and parabolic confinement.

Our calculations indicate that for a confinement provided
by the positive background charge density, the system has an
instability from a spin-polarized edge to a spin-textured edge
at an edge width ofw~4lg. Again, this compares rather
well with the results of Karlhedet al° Using effective-field
theories, they found an instability to a spin-textured edge at

approximatelyw= 3.0z for g=0.04. Note that the effective-
field theory tends to underestimate the valuevdbr which
there is an onset to spin-textured edd&¥Ve also want to
emphasize that in contrast to the effective-fieldd Hartree-
FockK theory, our ensemble spin DFT is applicable to general

15—
4

1.0

05 r

00 L=t

r [L]

10.0

15.0

inhomogeneous QHE system and includes the effects of
Landau-level mixings. As an example of our results, we

. , , show in Figs. 4 and 5 charge densities and spin rotation
FIG. 3. The local total filling factor and spin rotation anglg) _angles for a system with an edge widthwt4 and Lande

for the v=1 channel of the same parameters as in Fig. 2. This . . . ~
channel has a lower energy than the 0 channel, and is locally 'actor of g*=1.00 in a magnetic field of 12 Tgt=0.04).

nearly completely polarized with a nontrivial spin texture. That is, 1€ bump in total filling factor in the bulk of the=0 chan-

at any pointr the spin density is nearly polarized, but the spin N€l (Fig. 4) occurs quite generically for FQHE droplets, both
direction is changing with positior{ln agreement with the general for the choice of confinement discussed here and for para-
properties of the lowest Landau level, as described in the text, thBolic confinement. In the case here, the system tries to take
polarization in fact deviates slightly from unity by an amount of advantage of correlation energy &+ 1/3 andv=2/5 to as
order d6/dr)2. This is too small here to show up in the figujes. large an extent as possible as the edge is made wider. It does
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15— spins, as well as Landau-level mixing. On a formal level, we
Y have demonstrated that our ensemble spin DFT in the LDA
———= 0(r) can give the correct spin stiffness a=1. We have per-

formed model calculations for circularly symmetric QHE
dots in the integer and FQHE regime. These calculations
show, in agreement with Hartree-Fock and effective-field
calculations:®~*?that the polarized system develops an insta-
bility as the confinement is softened and that the spin-
textured edge attains a lower energy than the spin-polarized
one. We have not included in our calculations the possibili-
ties of charge-density waves, which may océdfinstead of

the spin-textured edges at larger valuesgofPreliminary
calculations of parabolic dots show a surprisingly rich struc-
ture in spin and charge densities. This indicates that quantum
00 Lwmimg” L . dots in the FQHE regime is a rich subject yet to be fully
0.0 5.0 10.0 20.0 explored.
r ] We have spent a great deal of effort on improving our
approximation for the exchange-correlation ene¢gyv,¢).

FIG. 5. Thev =1 channel for the same system as in Fig. 4. Thisat the present, we are confident that we have a very good
chgnnel is also nearly completely polarized, but has a nomri"iabpproximation for spin-polarized systems, and a good ap-
spin texture and lower energy than the-0 channel. proximation for aribitrary polarizations and~1. We are

) . less confident about our exchange-correlation energy for ar-
so by making the edge of the electron density sharper thagjrary nolarizations in the FQHE regime. Work needs still to
that of the background charge, and making regionsvof ha gone to refine the exchange-correlation energy for general
=1/3 larger than what is needed to accomodate all eIectropQHE systems. However, we are confident that the approach

charge. The residual electron charge is piled up in @ bumgseys is vobust and accurate provided good approximations
reachingv=2/5. Thev=1 channel, on the other hand, is fyr the exchange-correlation energy exist.

locally nearly completely polarized with a spin rotation angle
similar to thev=1 andw=_8 system for = 1.

We have also performed calculations for parabolically
confined systems in the FQHE regime. The results are in this The authors are greatly indebted to Professor E.K.U.
case more difficult to interpret with more complicated struc-Gross for pointing out the work on noncollinear spins by
tures in the electron density and spin textures. For examplé{ubler and coworkers. We would also like to thank Profes-
we have found that for some values of the magnetic field thor Walter Kohn for stimulating and challenging comments
v=0 channel can be a=1/3 droplet with a large bump in 0on our ensemble DFT approach, and Professor A.H. Mac-
density at the edge, while the=1 channel develops a hole Donald for being a general source of wisdom of the QHE to
with reversed spin density at the center and has lower energyhom we can always turn for good comments and inspira-
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