395 research outputs found

    The cleavage surface of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) superconductors: from diversity to simplicity

    Full text link
    We elucidate the termination surface of cleaved single crystals of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) families of the high temperature iron based superconductors. By combining scanning tunneling microscopic data with low energy electron diffraction we prove that the termination layer of the Ba122 systems is a remnant of the Ba layer, which exhibits a complex diversity of ordered and disordered structures. The observed surface topographies and their accompanying superstructure reflections in electron diffraction depend on the cleavage temperature. In stark contrast, Fe_(y)Se_(1-x)Te_(x) possesses only a single termination structure - that of the tetragonally ordered Se_(1-x)Te_(x) layer.Comment: 4 pages, 4 figure

    A high resolution, hard x-ray photoemission investigation of La_(2-2x)Sr_(1+2x)Mn_2O_7 (0.30<x<0.50): on microscopic phase separation and the surface electronic structure of a bilayered CMR manganite

    Full text link
    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the bilayered, colossal magnetoresistant manganite La_(2-2x)Sr_(1+2x)Mn_2O_7 (LSMO) with 0.30<x<0.50 are presented. Making use of the increased bulk-sensitivity upon hard x-ray excitation it is shown that the core level footprint of the electronic structure of the LSMO cleavage surface is identical to that of the bulk. Furthermore, by comparing the core level shift of the different elements as a function of doping level x, it is shown that microscopic phase separation is unlikely to occur for this particular manganite well above the Curie temperature.Comment: 7 pages, 5 figure

    Nanoscale superconducting gap variations, strong coupling signatures and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    Full text link
    We present tunneling data from optimally-doped, superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherence-like peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Delta. The average magnitude of 2Delta is ~7.4 kBTC, which exceeds the BCS weak coupling value for either s- or d-wave superconductivity. The characteristic length scales of the deviations from the average gap value, and of an anti-correlation discovered between the gap magnitude and the zero bias conductance, match well with the average separation between the Co dopant ions in the superconducting FeAs planes. The tunneling spectra themselves possess a peak-dip-hump lineshape, suggestive of a coupling of the superconducting electronic system to a well-defined bosonic mode of energy 4.7 kBTC, such as the spin resonance observed recently in inelastic neutron scattering.Comment: 4 figures, corrected typos, reduced size of image

    Surface adatom conductance filtering in scanning tunneling spectroscopy of Co-doped BaFe2As2 iron pnictide superconductors

    Full text link
    We establish in a combination of ab initio theory and experiments that the tunneling process in scanning tunneling microscopy/spectroscopy on the A-122 iron pnictide superconductors - in this case BaFe2x_{2-x}Cox_xAs2_2 - involve a strong adatom filtering of the differential conductance from the near-EF Fe3d states, which in turn originates from the top-most sub-surface Fe layer of the crystal. The calculations show that the dominance of surface Ba-related tunneling pathways leaves fingerprints found in the experimental differential conductance data, including large particle-hole asymmetry and an energy-dependent contrast inversion.Comment: 4.5 pages, 4 figures. To appear in Physical Review Letter

    Rare earth contributions to the X-ray magnetic circular dichroism at the Co K edge in rare earth-cobalt compounds investigated by multiple-scattering calculations

    Full text link
    The X-ray magnetic circular dichroism (XMCD) has been measured at the Co K edge in Co-hcp and R-Co compounds (R=La, Tb, Dy). The structure of the experimental XMCD spectra in the near-edge region has been observed to be highly sensitive to the magnetic environment of the absorbing site. Calculations of the XMCD have been carried out at the Co K edge in Co metal, LaCo5_5 and TbCo5_5 within the multiple-scattering framework including the spin-orbit coupling. In the three systems, the XMCD spectra in the near-edge region are well reproduced. The possibility to separate and quantitatively estimate the local effects from those due to the neighboring atoms in the XMCD cross section makes possible a more physical understanding of the spectra. The present results emphasize the major role played by the dd states of the Tb ions in the XMCD spectrum at the Co K edge in the TbCo5_5 compound.Comment: 34 pages, revtex, 10 eps figures included with epsf, after referee revie

    Tuning the 4f-state occupancy of cerium in highly correlated CeSi/ Fe multilayers: a study by x-ray absorption spectroscopy

    Full text link
    Spectra of x-ray absorption and magnetic circular dichroism were measured at M4,5(3d) and L2,3(2p) edges of Ce in multilayers [Ce(1-x)Six/Fe]xn, with x between 0.1 and 0.65. The study uncovers the highly correlated nature of this layered system. An alpha-phase like electronic configuration of Ce is observed, with ordered magnetic moments on the 4f and 5d electrons induced by the interaction with Fe. Increasing the Si content reduces the strength of the hy-bridization between the 4f and conduction-band states which is reflected in a growing occupation and magnetic polarization of the 4f states. Variations of the shape and intensity of the L2,3-edge dichroism spectra, discussed in a simple phenomenological model, show the importance of the exchange interaction between the Ce-4f and 5d electrons, spin polarized by the interaction with Fe at the interfaces, for the electronic structure of Ce at high Si concentration and low temperature. A model of the band structure of rare-earth transition-metal compounds permits to argue that magnetic order on the Ce 4f electrons in the multilayers is due to different mechanisms: to hybridization of the Ce-4f with the Fe-3d states at low Si concentration and to intra-atomic 4f-5d exchange at high Si concentration. This is at variance with magnetic order in the intermetallics CeSi2-delta and CeSi which results from interaction between the localized 4f magnetic moments mediated by the Si-derived (s,p) conduction electrons, in competition with the Kondo effect.Comment: 31 pages, 9 figures, submitted to Phys. Rev.

    Pseudogap-less high Tc_{c} superconductivity in BaCox_{x}Fe2x_{2-x}As2_{2}

    Get PDF
    The pseudogap state is one of the peculiarities of the cuprate high temperature superconductors. Here we investigate its presence in BaCox_{x}Fe2x_{2-x}As2_{2}, a member of the pnictide family, with temperature dependent scanning tunneling spectroscopy. We observe that for under, optimally and overdoped systems the gap in the tunneling spectra always closes at the bulk Tc_{c}, ruling out the presence of a pseudogap state. For the underdoped case we observe superconducting gaps over large fields of view, setting a lower limit of tens of nanometers on the length scale of possible phase separated regions.Comment: 5 pages, 3 figure

    Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFe2_2As2_2, an Fe-pnictide superconductor parent compound

    Get PDF
    Using angle resolved photoemission it is shown that the low lying electronic states of the iron pnictide parent compound EuFe2_2As2_2 are strongly modified in the magnetically ordered, low temperature, orthorhombic state compared to the tetragonal, paramagnetic case above the spin density wave transition temperature. Back-folded bands, reflected in the orthorhombic/ anti-ferromagnetic Brillouin zone boundary hybridize strongly with the non-folded states, leading to the opening of energy gaps. As a direct consequence, the large Fermi surfaces of the tetragonal phase fragment, the low temperature Fermi surface being comprised of small droplets, built up of electron and hole-like sections. These high resolution ARPES data are therefore in keeping with quantum oscillation and optical data from other undoped pnictide parent compounds.Comment: 4 figures, 6 page
    corecore