341 research outputs found

    Fundamental aspects of sludge filtration and expression

    Get PDF

    Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening?

    Get PDF
    Objectives To give an overview of the genetic and structural abnormalities occurring in fetuses with nuchal translucency (NT) measurement exceeding the 95th percentile at first-trimester screening and to investigate which of these abnormalities would be missed if cell-free fetal DNA (cfDNA) were used as a first-tier screening test for chromosomal abnormalities. Methods This is a national study including 1901 pregnancies with NT &gt;= 95th percentile referred to seven university hospitals in the Netherlands between 1 January 2010 and 1 January 2016. All cases with unknown pregnancy outcome were excluded. Results of detailed ultrasound examinations, karyotyping, genotyping, pregnancy and neonatal outcomes, investigation by a clinical geneticist and post-mortem investigations were collected. Results In total, 821 (43%) pregnancies had at least one abnormality. The rate of abnormalities was 21% for fetuses with NT between 95(th) and 99(th) percentile and 62% for fetuses with NT &gt;= 99(th) percentile. Prevalence of single-gene disorders, submicroscopic, chromosomal and structural abnormalities was 2%, 2%, 30% and 9%, respectively. Conclusion Although cfDNA is superior to the combined test, especially for the detection of trisomy 21, 34% of the congenital abnormalities occurring in fetuses with increased NT may remain undetected in the first trimester of pregnancy, unless cfDNA is used in combination with fetal sonographic assessment, including NT measurement.</p

    A validated numerical model for the growth and resorption of bubbles in magma

    Get PDF
    The rate and timing of bubble growth in magma is an important control on eruption style, determining whether or not magma fragments to produce an explosive eruption. Bubbles nucleate, grow, shrink, and de-nucleate in magma in response to changes in pressure and temperature, and these changes may be recorded in the spatial distribution and speciation of water 'frozen into' the glass in eruptive products. Accurate modelling of growth and resorption is therefore essential both for forward modelling of eruptive processes, and for inverse modelling to reconstruct pre-eruptive history. We present the first experimentally-validated numerical model for bubble growth and resorption in magma. The model includes the kinetics of speciation, allows for arbitrary temperature and pressure pathways, and accounts for the impact of spatial variations in water content on diffusivity and viscosity. We validate the model against three sets of data. (1) Continuous vesicularity-time data collected using optical dilatometry and in-situ synchrotron-source x-ray tomography of natural and synthetic magma during thermally-induced vesiculation and resorption at magmatic temperatures and ambient pressure. This represents approximately isobaric bubble growth and resorption under disequilibrium conditions. (2) Final vesicularity data from decompression experiments at magmatic temperatures and pressures. This represents isothermal, decompression-driven bubble growth from equilibrium to strongly disequilibrium conditions. (3) Speciation data from diffusion-couple experiments on synthetic haplogranites at magmatic temperatures and pressures. The numerical model closely reproduces all experimental data, providing validation against equilibrium and disequilibrium bubble growth/resorption and speciation scenarios. The validated model can be used to predict the growth and resorption of bubbles, and associated changes in magma properties, for arbitrary eruption pathways. It can also be used to reconstruct pressure-temperature-time pathways from textures and volatile contents of eruptive products. This will open up new ways of accessing the dynamics of magma ascent and eruption in unobserved volcanic eruptions

    Palmitate-Induced Vacuolar-Type H(+)-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction

    Get PDF
    Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H+-ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V-1 and the integral membrane V-0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction

    In-depth molecular analysis of combined and co-primary pulmonary large cell neuroendocrine carcinoma and adenocarcinoma

    Get PDF
    Up to 14% of large cell neuroendocrine carcinomas (LCNECs) are diagnosed in continuity with nonsmall cell lung carcinoma. In addition to these combined lesions, 1% to 7% of lung tumors present as co-primary tumors with multiple synchronous lesions. We evaluated molecular and clinicopathological characteristics of combined and co-primary LCNEC-adenocarcinoma (ADC) tumors. Ten patients with LCNEC-ADC (combined) and five patients with multiple synchronous ipsilateral LCNEC and ADC tumors (co-primary) were included. DNA was isolated from distinct tumor parts, and 65 cancer genes were analyzed by next generation sequencing. Immunohistochemistry was performed including neuroendocrine markers, pRb, Ascl1 and Rest. Pure ADC (N = 37) and LCNEC (N = 17) cases were used for reference. At least 1 shared mutation, indicating tumor clonality, was found in LCNEC- and ADC-parts of 10/10 combined tumors but only in 1/5 co-primary tumors. A range of identical mutations was observed in both parts of combined tumors: 8/10 contained ADC-related (EGFR/KRAS/STK11 and/or KEAP1), 4/10 RB1 and 9/10 TP53 mutations. Loss of pRb IHC was observed in 6/10 LCNEC- and 4/10 ADC-parts. The number and intensity of expression of Ascl1 and neuroendocrine markers increased from pure ADC (low) to combined ADC (intermediate) and combined and pure LCNEC (high). The opposite was true for Rest expression. In conclusion, all combined LCNEC-ADC tumors were clonally related indicating a common origin. A relatively high frequency of pRb inactivation was observed in both LCNEC- and ADC-parts, suggesting an underlying role in LCNEC-ADC development. Furthermore, neuroendocrine differentiation might be modulated by Ascl1(+) and Rest(-) expression

    Cancer-ID:Toward Identification of Cancer by Tumor-Derived Extracellular Vesicles in Blood

    Get PDF
    Extracellular vesicles (EVs) have great potential as biomarkers since their composition and concentration in biofluids are disease state dependent and their cargo can contain disease-related information. Large tumor-derived EVs (tdEVs, >1μm) in blood from cancer patients are associated with poor outcome, and changes in their number can be used to monitor therapy effectiveness. Whereas, small tumor-derived EVs (<1μm) are likely to outnumber their larger counterparts, thereby offering better statistical significance, identification and quantification of small tdEVs are more challenging. In the blood of cancer patients, a subpopulation of EVs originate from tumor cells, but these EVs are outnumbered by non-EV particles and EVs from other origin. In the Dutch NWO Perspectief Cancer-ID program, we developed and evaluated detection and characterization techniques to distinguish EVs from non-EV particles and other EVs. Despite low signal amplitudes, we identified characteristics of these small tdEVs that may enable the enumeration of small tdEVs and extract relevant information. The insights obtained from Cancer-ID can help to explore the full potential of tdEVs in the clinic

    Quantifying Microstructural Evolution in Moving Magma

    Get PDF
    Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior
    corecore