29 research outputs found
The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing
In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS). By the use of rapid amplification of cDNA ends (5′-RACE) we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms
The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling
The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa
Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa
Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system
Zooshikella harenae sp. nov., Isolated from Pacific Oyster Crassostrea gigas, and Establishment of Zooshikella ganghwensis subsp. marina subsp. nov. and Zooshikella ganghwensis subsp. ganghwensis subsp. nov.
Here, we describe the polyphasic taxonomy of a novel isolated strain WH53T from the genus Zooshikella isolated from the sand sediment located between the lumen of the Crassostrea gigas From Germany. Phylogenetic analysis determined that the strain WH53T had a high similarity to Zooshikella ganghwensis JC2044T (99.57%) and Zooshikella marina LMG 28823T (99.36%). Strain WH53T contained ubiquinone-9 (Q-9) as the predominant menaquinone, and the major fatty acids were C16:0, C16:1ω7c, and C18:1ω7c. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, amino phospholipids, and unidentified phospholipids were identified as their polar lipid composition. The DNA G+C content and genome size of strain WH53T were 40.08 mol% and 5,914,969 bp, respectively. Digital DNA–DNA hybridisation (dDDH) for strain WH53T against Z. ganghwensis JC2044T and Z. marina LMG 28823T showed low relatedness values of 26.3% and 26.1%, respectively. The extract of strain WH53T exhibited antimicrobial property. Strain WH53T represents a novel species in the genus Zooshikella. We propose the name of Zooshikella harenae sp. nov., with the type strain WH53T (= DSM 111628T = NCCB 100808T). Furthermore, the dDDH, average nucleotide identity (ANI), percentage of conserved proteins (POCP), and amino acid identity (AAI) value between Z. marina LGM 28823T and Z. ganghwensis DSM 15267T were 79.9%, 97.84%, 76.08%, and 87.01%, respectively, suggesting that both of them should be reclassified as Z. ganghwensis subsp. marina subsp. nov. and Z. ganghwensis subsp. ganghwensis DSM 15267 subsp. nov
<i>Pacificimonas pallium</i> sp. nov., an Isolated Bacterium from the Mantle of Pacific Oyster <i>Crassostrea gigas</i> in Germany, and Prediction of One-Carbon Metabolism
A yellow bacterium from marine agar, strain WHA3T, was isolated from the mantel of the Pacific oysters Crassostrea gigas in the Wilhelmshaven Sea in northern Germany. Based on the 16S rRNA gene sequence, strain WHA3T had a high similarity to Pacificimonas flava JLT2015T (95.80%) and 94.79% to Pacificimonas aurantium JLT2012T. Furthermore, the dDDH and ANI value analysis between WHA3T and other closest type strains were lower than 70% and 95%, respectively. The percentage of conserved proteins (POCP) and the average amino acid identity (AAI) value against Pacificimonas flava JLT2015T and Pacificimonas aurantium JLT2012T represented in the ranges of higher than 50% and 60%, respectively. Strain WHA3T contained ubiquinone-10 (Q-10) as the predominant quinone, and the major fatty acids were C16:1 ω7c and C18:1 ω7c. Granules of polyhydroxyalkanoates (PHAs) were absent. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, several sphingoglycolipids, an unknown phospholipid, an unknown glycolipid, and an unknown polar lipid. The polyamines contained spermidine and spermine. The DNA G + C content of strain WHA3T was 61.69%. An analysis of the whole-genome sequence in the frame of genome mining strain WHA3T predicted the presence of genomes for one-carbon metabolism, TonB-dependent transporters, vitamin B12 transporter, iron siderophore receptor protein, and other genes, some of which play important roles against restricted nutrient sources. The extract of strain WHA3T moderately inhibited the growth of Candida albicans DSM 1665. The polyphasic taxonomic analysis results suggested that strain WHA3T could be separated from its closest type strains. Strain WHA3T represents a novel species in the genus Pacificimonas, for which we propose the name Pacificimonaspallium sp. nov., with the type strain WHA3T (= DSM 111825T = NCCB 100832T)
<i>Zooshikella harenae</i> sp. nov., Isolated from Pacific Oyster <i>Crassostrea gigas</i>, and Establishment of <i>Zooshikella ganghwensis</i> subsp. <i>marina</i> subsp. nov. and <i>Zooshikella ganghwensis</i> subsp. <i>ganghwensis</i> subsp. nov.
Here, we describe the polyphasic taxonomy of a novel isolated strain WH53T from the genus Zooshikella isolated from the sand sediment located between the lumen of the Crassostrea gigas From Germany. Phylogenetic analysis determined that the strain WH53T had a high similarity to Zooshikella ganghwensis JC2044T (99.57%) and Zooshikella marina LMG 28823T (99.36%). Strain WH53T contained ubiquinone-9 (Q-9) as the predominant menaquinone, and the major fatty acids were C16:0, C16:1ω7c, and C18:1ω7c. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, amino phospholipids, and unidentified phospholipids were identified as their polar lipid composition. The DNA G+C content and genome size of strain WH53T were 40.08 mol% and 5,914,969 bp, respectively. Digital DNA–DNA hybridisation (dDDH) for strain WH53T against Z. ganghwensis JC2044T and Z. marina LMG 28823T showed low relatedness values of 26.3% and 26.1%, respectively. The extract of strain WH53T exhibited antimicrobial property. Strain WH53T represents a novel species in the genus Zooshikella. We propose the name of Zooshikella harenae sp. nov., with the type strain WH53T (= DSM 111628T = NCCB 100808T). Furthermore, the dDDH, average nucleotide identity (ANI), percentage of conserved proteins (POCP), and amino acid identity (AAI) value between Z. marina LGM 28823T and Z. ganghwensis DSM 15267T were 79.9%, 97.84%, 76.08%, and 87.01%, respectively, suggesting that both of them should be reclassified as Z. ganghwensis subsp. marina subsp. nov. and Z. ganghwensis subsp. ganghwensis DSM 15267 subsp. nov
Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa.
Impedance spectroscopy has been applied in prokaryotic and eukaryotic cytometry as a label-free method for the investigation of adherent cells. In this paper, its use for characterizing the growth dynamics of P. aeruginosa biofilms is described and compared to crystal violet staining and confocal microscopy. The method allows monitoring the growth of biofilm-forming P. aeruginosa in a continuous and label-free manner over a period of 72 h in a 96 well plate format. Impedance curves obtained for P. aeruginosa PA14 wild type and mutant strains with a transposon insertion in pqsA and pelA genes exhibited distinct phases. We propose that the slope of the declining curve following a maximum at ca. 35-40 h is a measure of biofilm formation. Transplant experiments with P. aeruginosa biofilms and paraffin suggest that the impedance also reflects pellicle formation at the liquid-air interface, a barely considered contributor to impedance. Finally, the impairment of biofilm formation upon treatment of cultures with L-arginine and with ciprofloxacin, tobramycin and meropenem was studied by single frequency impedance spectroscopy. We suggest that these findings qualify impedance spectroscopy as an additional technique to characterize biofilm formation and its modulation by small molecule drugs