22 research outputs found

    Grasping Objects with Environmentally Induced Position Uncertainty

    Get PDF
    Due to noisy motor commands and imprecise and ambiguous sensory information, there is often substantial uncertainty about the relative location between our body and objects in the environment. Little is known about how well people manage and compensate for this uncertainty in purposive movement tasks like grasping. Grasping objects requires reach trajectories to generate object-fingers contacts that permit stable lifting. For objects with position uncertainty, some trajectories are more efficient than others in terms of the probability of producing stable grasps. We hypothesize that people attempt to generate efficient grasp trajectories that produce stable grasps at first contact without requiring post-contact adjustments. We tested this hypothesis by comparing human uncertainty compensation in grasping objects against optimal predictions. Participants grasped and lifted a cylindrical object with position uncertainty, introduced by moving the cylinder with a robotic arm over a sequence of 5 positions sampled from a strongly oriented 2D Gaussian distribution. Preceding each reach, vision of the object was removed for the remainder of the trial and the cylinder was moved one additional time. In accord with optimal predictions, we found that people compensate by aligning the approach direction with covariance angle to maintain grasp efficiency. This compensation results in higher probability to achieve stable grasps at first contact than non-compensation strategies in grasping objects with directional position uncertainty, and the results provide the first demonstration that humans compensate for uncertainty in a complex purposive task

    Bimanual grasp planning reflects changing rather than fixed constraint dominance

    Get PDF
    We studied whether motor-control constraints for grasping objects that are moved to new positions reflect a rigid constraint hierarchy or a flexible constraint hierarchy. In two experiments, we asked participants to move two plungers from the same start locations to different target locations (both high, both low, or one high and one low). We found that participants grasped the plungers symmetrically and at heights that ensured comfortable or easy-to-control end postures when the plungers had the same target heights, but these grasp tendencies were reduced when the plungers had different target heights. In addition, when the plungers had different mass distributions, participants behaved in ways that suggested still-different emphases of the relevant grasp constraints. When the plungers had different mass distributions, participants sacrificed bimanual symmetry for end-state comfort. The results suggest that bimanual grasp planning relies on a flexible rather than static hierarchy. Different constraints take on different degrees of importance depending on the nature of the task and on the level of task experience. The results have implications for the understanding of perceptual-motor skill learning. It may be that one mechanism underlying such learning is changing the priorities of task constraints

    When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp

    Get PDF
    Background Most research on the roles of auditory information and its interaction with vision has focused on perceptual performance. Little is known on the effects of sound cues on visually-guided hand movements. Methodology/Principal Findings We recorded the sound produced by the fingers upon contact as participants grasped stimulus objects which were covered with different materials. Then, in a further session the pre-recorded contact sounds were delivered to participants via headphones before or following the initiation of reach-to-grasp movements towards the stimulus objects. Reach-to-grasp movement kinematics were measured under the following conditions: (i) congruent, in which the presented contact sound and the contact sound elicited by the to-be-grasped stimulus corresponded; (ii) incongruent, in which the presented contact sound was different to that generated by the stimulus upon contact; (iii) control, in which a synthetic sound, not associated with a real event, was presented. Facilitation effects were found for congruent trials; interference effects were found for incongruent trials. In a second experiment, the upper and the lower parts of the stimulus were covered with different materials. The presented sound was always congruent with the material covering either the upper or the lower half of the stimulus. Participants consistently placed their fingers on the half of the stimulus that corresponded to the presented contact sound. Conclusions/Significance Altogether these findings offer a substantial contribution to the current debate about the type of object representations elicited by auditory stimuli and on the multisensory nature of the sensorimotor transformations underlying action

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions
    corecore