584 research outputs found

    Myxosporean hyperparasites of gill monogeneans are basal to the Multivalvulida

    Get PDF
    Background: Myxosporeans are known from aquatic annelids but parasitism of platyhelminths by myxosporeans has not been widely reported. Hyperparasitism of gill monogeneans by Myxidium giardi has been reported from the European eel and Myxidium-like hyperparasites have also been observed during studies of gill monogeneans from Malaysia and Japan. The present study aimed to collect new hyperparasite material from Malaysia for morphological and molecular descriptions. In addition, PCR screening of host fish was undertaken to determine whether they are also hosts for the myxosporean. Results: Heavy myxosporean infections were observed in monogeneans from two out of 14 fish and were detected from a further five fish using specific PCRs and pooled monogenean DNA. Positive DNA isolates were sequenced and were from a single species of myxosporean. Myxospore morphology was consistent with Myxidium with histozoic development in the parenchymal tissues of the monogenean. Simultaneous infections in the fish could not be confirmed microscopically; however, identical myxosporean DNA could be amplified from kidney, spleen and intestinal tract tissues using the specific PCR. Small subunit (SSU) rDNA for the myxosporean was amplified and was found to be most similar (92%) to that of another hyperparasitic myxosporean from a gill monogenean from Japan and to numerous multivalvulidan myxosporeans from the genus Kudoa (89-91%). Phylogenetic analyses placed the hyperparasite sequence basally to clades containing Kudoa, Unicapsula and Sphaerospora. Conclusions: The myxosporean infecting the gill monogenean, Diplectanocotyla gracilis, from the Indo-Pacific tarpon, Megalops cyprinoides, is described as a new species, Myxidium incomptavermi, based on a histozoic development in the monogenean host and its phylogenetic placement. We have demonstrated for the first time that a myxosporean hyperparasite of gill monogeneans is detectable in the fish host. However, myxospores could not be isolated from the fish and confirmation was by PCR alone. The relationship between the myxosporean infection in gill monogeneans and the presence of parasitic DNA in fish is not yet fully understood. Nonetheless, myxospores with a Myxidium-like morphology, two of which we have shown to be phylogenetically related, have now been reported to develop in three different gill monogeneans, indicating that myxosporeans are true parasites of monogeneans

    Phylogenetic position of the freshwater fish trypanosome, Trypanosoma ophiocephali (Kinetoplastida) inferred from the complete small subunit ribosomal RNA gene sequence

    Get PDF
    The complete small subunit rRNA (SSrRNA) gene sequence (2,142 nucleotides) of the freshwater fish trypanosome Trypanosoma ophiocephali Chen (1964) was determined. The phylogenetic analysis deduced using neighbor-joining, maximum parsimony, and Bayesian methods demonstrated the existence of an “aquatic clade”. T. ophiocephali was revealed to be a member of the freshwater fish trypanosomes and form the sister species with Trypanosoma siniperca and Trypanosoma sp. Carpio with high bootstrap values (98% MP, 100% NJ, 100% Bay). The high similarity of SSrRNA gene sequences and morphometric characters showed that T. ophiocephali, T. siniperca and T. sp. Carpio probably were the same species. The phylogenetic trees further suggested that Chinese freshwater fish trypanosome might be paraphyletic, and fish trypanosomes should have low host specificity

    Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate

    Get PDF
    Adequate dosimetry is mandatory for effective and safe peptide receptor radionuclide therapy (PRRT). Besides the kidneys, the bone marrow is a potentially dose-limiting organ. The radiation dose to the bone marrow is usually calculated according to the MIRD scheme, where the accumulated activity in the bone marrow is calculated from the accumulated radioactivity of the radiopharmaceutical in the blood. This may underestimate the absorbed dose since stem cells express somatostatin receptors. We verified the blood-based method by comparing the activity in the blood with the radioactivity in bone marrow aspirates. Also, we evaluated the absorbed cross-dose from the source organs (liver, spleen, kidneys and blood), tumours and the so-called "remainder of the body" to the bone marrow
    corecore