5,643 research outputs found

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part II: The intrinsic electronic midgap states

    Full text link
    We propose a structural model that treats in a unified fashion both the atomic motions and electronic excitations in quenched melts of pnictide and chalcogenide semiconductors. In Part I (submitted to J. Chem. Phys.), we argued these quenched melts represent aperiodic ppσpp\sigma-networks that are highly stable and, at the same time, structurally degenerate. These networks are characterized by a continuous range of coordination. Here we present a systematic way to classify these types of coordination in terms of discrete coordination defects in a parent structure defined on a simple cubic lattice. We identify the lowest energy coordination defects with the intrinsic midgap electronic states in semiconductor glasses, which were argued earlier to cause many of the unique optoelectronic anomalies in these materials. In addition, these coordination defects are mobile and correspond to the transition state configurations during the activated transport above the glass transition. The presence of the coordination defects may account for the puzzling discrepancy between the kinetic and thermodynamic fragility in chalcogenides. Finally, the proposed model recovers as limiting cases several popular types of bonding patterns proposed earlier, including: valence-alternation pairs, hypervalent configurations, and homopolar bonds in heteropolar compounds.Comment: 17 pages, 15 figures, revised version, final version to appear in J. Chem. Phy

    Observation of metastable hcp solid helium

    Full text link
    We have produced and observed metastable solid helium-4 below its melting pressure between 1.1 K and 1.4 K. This is achieved by an intense pressure wave carefully focused inside a crystal of known orientation. An accurate density map of the focal zone is provided by an optical interferometric technique. Depending on the sample, minimum density achieved at focus corresponds to pressures between 2 and 4 bar below the static melting pressure. Beyond, the crystal undergoes an unexpected instability much earlier than the predicted spinodal limit. This opens a novel opportunity to study this quantum crystal in an expanded metastable state and its stability limits.Comment: deuxi\`eme versio

    Effect of inelasticity on the phase transitions of a thin vibrated granular layer

    Full text link
    We describe an experimental and computational investigation of the ordered and disordered phases of a vibrating thin, dense granular layer composed of identical metal spheres. We compare the results from spheres with different amounts of inelasticity and show that inelasticity has a strong effect on the phase diagram. We also report the melting of an ordered phase to a homogeneous disordered liquid phase at high vibration amplitude or at large inelasticities. Our results show that dissipation has a strong effect on ordering and that in this system ordered phases are absent entirely in highly inelastic materials.Comment: 5 pages, 5 figures, published in Physical Review E. Title of first version slightly change

    Melting and Rippling Phenomenan in Two Dimensional Crystals with localized bonding

    Full text link
    We calculate Root Mean Square (RMS) deviations from equilibrium for atoms in a two dimensional crystal with local (e.g. covalent) bonding between close neighbors. Large scale Monte Carlo calculations are in good agreement with analytical results obtained in the harmonic approximation. When motion is restricted to the plane, we find a slow (logarithmic) increase in fluctuations of the atoms about their equilibrium positions as the crystals are made larger and larger. We take into account fluctuations perpendicular to the lattice plane, manifest as undulating ripples, by examining dual layer systems with coupling between the layers to impart local rigidly (i.e. as in sheets of graphene made stiff by their finite thickness). Surprisingly, we find a rapid divergence with increasing system size in the vertical mean square deviations, independent of the strength of the interplanar coupling. We consider an attractive coupling to a flat substrate, finding that even a weak attraction significantly limits the amplitude and average wavelength of the ripples. We verify our results are generic by examining a variety of distinct geometries, obtaining the same phenomena in each case.Comment: 17 pages, 28 figure

    Theory of Structural Glasses and Supercooled Liquids

    Full text link
    We review the Random First Order Transition Theory of the glass transition, emphasizing the experimental tests of the theory. Many distinct phenomena are quantitatively predicted or explained by the theory, both above and below the glass transition temperature TgT_g. These include: the viscosity catastrophe and heat capacity jump at TgT_g, and their connection; the non-exponentiality of relaxations and their correlation with the fragility; dynamic heterogeneity in supercooled liquids owing to the mosaic structure; deviations from the Vogel-Fulcher law, connected with strings or fractral cooperative rearrangements; deviations from the Stokes-Einstein relation close to TgT_g; aging, and its correlation with fragility; the excess density of states at cryogenic temperatures due to two level tunneling systems and the Boson Peak.Comment: submitted to Ann. Rev. Phys. Che

    Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density functional theory

    Full text link
    We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive-definite pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio L = 0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.Comment: 19 pages, 5 figures, submitted to J. Chem. Phys; new version: minor changes in structure of pape

    Plasticization and antiplasticization of polymer melts diluted by low molar mass species

    Full text link
    An analysis of glass formation for polymer melts that are diluted by structured molecular additives is derived by using the generalized entropy theory, which involves a combination of the Adam-Gibbs model and the direct computation of the configurational entropy based on a lattice model of polymer melts that includes monomer structural effects. Antiplasticization is accompanied by a "toughening" of the glass mixture relative to the pure polymer, and this effect is found to occur when the diluents are small species with strongly attractive interactions with the polymer matrix. Plasticization leads to a decreased glass transition temperature T_g and a "softening" of the fragile host polymer in the glass state. Plasticization is prompted by small additives with weakly attractive interactions with the polymer matrix. The shifts in T_g of polystyrene diluted by fully flexible short oligomers are evaluated from the computations, along with the relative changes in the isothermal compressibility at T_g to characterize the extent to which the additives act as antiplasticizers or plasticizers. The theory predicts that a decreased fragility can accompany both antiplasticization and plasticization of the glass by molecular additives. The general reduction in the T_g and fragility of polymers by these molecular additives is rationalized by analyzing the influence of the diluent's properties (cohesive energy, chain length, and stiffness) on glass formation in diluted polymer melts. The description of glass formation at fixed temperature that is induced upon change the fluid composition directly implies the Angell equation for the structural relaxation time as function of the polymer concentration, and the computed "zero mobility concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure
    corecore