1,948 research outputs found
The True Incidence of Magnetism among Field White Dwarfs
We study the incidence of magnetism in white dwarfs from three large and
well-observed samples of hot, cool, and nearby white dwarfs in order to test
whether the fraction of magnetic degenerates is biased, and whether it varies
with effective temperature, cooling age, or distance. The magnetic fraction is
considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the
Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the
generally-hotter white dwarfs of the Palomar Green Survey. We show that the
mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more,
so there may be a strong bias against their selection in the magnitude-limited
Palomar Green Survey. We argue that this bias is not as important in the
samples of cool and nearby white dwarfs. However, this bias may not account for
all of the difference in the magnetic fractions of these samples.
It is not clear that the magnetic white dwarfs in the cool and local samples
are drawn from the same population as the hotter PG stars. In particular, two
or threee of the cool sample are low-mass white dwarfs in unresolved binary
systems. Moreover, there is a suggestion from the local sample that the
fractional incidence may increase with decreasing temperature, luminosity,
and/or cooling age. Overall, the true incidence of magnetism at the level of 2
megagauss or greater is at least 10%, and could be higher. Limited studies
capable of detecting lower field strengths down to 10 kilogauss suggest by
implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu
Erratum: "Post-T Tauri Stars in the Nearest OB Association" (AJ, 124, 1670 [2002])
A few typos in Mamajek, Meyer, & Liebert (2002, AJ, 124, 1670) have been
corrected in this erratum (including two stellar misidentifications and an
incorrect power in the units of a slope). The most significant is the
correction of a sign error in the published polynomial conversion between Tycho
and Johnson-Cousins (B-V) colors.Comment: 1 page, to appear in April 2006 Astronomical Journa
SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field
We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom
Method of predicting radiation heat transfer in turbine cooling test facilities
A method is presented for calculating the average net radiation heat flux to turbine vanes and blades. The net radiation heat flux at a vane leading edge calculated by this method was compared with heat flux values independently determined from experimental tests on a vane in a cascade. The spectral emissivities of the turbine vane and the cascade wall were also measured
Effects of a ceramic coating on metal temperatures of an air-cooled turbine vane
The metal temperatures of air cooled turbine vanes both uncoated and coated with the NASA thermal barrier system were studied experimentally. Current and advanced gas turbine engine conditions were simulated at reduced temperatures and pressures. Airfoil metal temperatures were significantly reduced, both locally and on the average, by use of the the coating. However, at low gas Reynolds number, the ceramic coating tripped a laminar boundary layer on the suction surface, and the resulting higher heat flux increased the metal temperatures. Simulated coating loss was also investigated and shown to increase local metal temperatures. However, the metal temperatures in the leading edge region remained below those of the uncoated vane tested at similar conditions. Metal temperatures in the trailing edge region exceeded those of the uncoated vane
Ceramic coating effect on liner metal temperatures of film-cooled annular combustor
An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal
Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS
For a long time, no hydrogen-deficient white dwarfs have been known that have
effective temperature between 30 kK and < 45 kK, i.e. exceeding those of DB
white dwarfs and having lower ones than DO white dwarfs. Therefore, this
temperature range was long known as the DB-gap. Only recently, the SDSS
provided spectra of several candidate DB-gap stars. First analyses based on
model spectra calculated under the assumption of local thermodynamic
equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK
(Eisenstein et al. 2006). It has been shown for DO white dwarfs that the
relaxation of LTE is necessary to account for non local effects in the
atmosphere caused by the intense radiation field. Therefore, we calculated a
non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our
results confirm the existence of DB-gap white dwarfs.Comment: 4 pages, 2 figures, to appear in: Proceedings of the 16th European
Workshop on White Dwarf
- …
