63 research outputs found

    A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics

    Get PDF
    Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the basilar membrane are enhanced in the cochleae of CD-1Cx30A88V/A88V compared to CBA/J mice with sensitive high-frequency hearing, suggesting that gap junctions contribute to passive cochlear mechanics and energy distribution in the active cochlea. Surprisingly, the endocochlear potential that drives mechanoelectrical transduction currents in outer hair cells and hence cochlear amplification is greatly reduced in CD-1Cx30A88V/A88V mice. Yet, the saturating amplitudes of cochlear microphonic potentials in CD-1Cx30A88V/A88V and CBA/J mice are comparable. Although not conclusive, these results are compatible with the proposal that transmembrane potentials, determined mainly by extracellular potentials, drive somatic electromotility of outer hair cells

    Oxidative stress and inflammation induced by environmental and psychological stressors: a biomarker perspective

    Get PDF
    Significance. The environment can elicit biological responses such as oxidative stress (OS) and inflammation as consequence of chemical, physical or psychological changes. As population studies are essential for establishing these environment-organism interactions, biomarkers of oxidative stress or inflammation are critical in formulating mechanistic hypotheses. Recent advances. By using examples of stress induced by various mechanisms, we focus on the biomarkers that have been used to assess oxidative stress and inflammation in these conditions. We discuss the difference between biomarkers that are the result of a chemical reaction (such as lipid peroxides or oxidized proteins that are a result of the reaction of molecules with reactive oxygen species, ROS) and those that represent the biological response to stress, such as the transcription factor NRF2 or inflammation and inflammatory cytokines. Critical issues. The high-throughput and holistic approaches to biomarker discovery used extensively in large-scale molecular epidemiological exposome are also discussed in the context of human exposure to environmental stressors. Future directions. We propose to consider the role of biomarkers as signs and distinguish between signs that are just indicators of biological processes and proxies that one can interact with and modify the disease process

    Quantitative, Architectural Analysis of Immune Cell Subsets in Tumor-Draining Lymph Nodes from Breast Cancer Patients and Healthy Lymph Nodes

    Get PDF
    Background: To date, pathological examination of specimens remains largely qualitative. Quantitative measures of tissue spatial features are generally not captured. To gain additional mechanistic and prognostic insights, a need for quantitative architectural analysis arises in studying immune cell-cancer interactions within the tumor microenvironment and tumor-draining lymph nodes (TDLNs). Methodology/Principal Findings: We present a novel, quantitative image analysis approach incorporating 1) multi-color tissue staining, 2) high-resolution, automated whole-section imaging, 3) custom image analysis software that identifies cell types and locations, and 4) spatial statistical analysis. As a proof of concept, we applied this approach to study the architectural patterns of T and B cells within tumor-draining lymph nodes from breast cancer patients versus healthy lymph nodes. We found that the spatial grouping patterns of T and B cells differed between healthy and breast cancer lymph nodes, and this could be attributed to the lack of B cell localization in the extrafollicular region of the TDLNs. Conclusions/Significance: Our integrative approach has made quantitative analysis of complex visual data possible. Our results highlight spatial alterations of immune cells within lymph nodes from breast cancer patients as an independent variable from numerical changes. This opens up new areas of investigations in research and medicine. Future application of this approach will lead to a better understanding of immune changes in the tumor microenvironment and TDLNs, and how they affect clinical outcome

    Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound

    Get PDF
    The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2-/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution

    Cholesterol Influences Voltage-Gated Calcium Channels and BK-Type Potassium Channels in Auditory Hair Cells

    Get PDF
    The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitabilityare unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD) on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs) are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type) potassiumcurrent by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (∼30%), ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology

    Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation

    Get PDF
    Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed β€œmaturation,” when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development

    Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Get PDF
    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways
    • …
    corecore