136 research outputs found

    “Perversity, Futility, Jeopardy”: An Economic Analysis of the Attack on Gun Control

    Get PDF
    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bachelor’s thesis has been to examine the effect of nanofluids on heat pipes on the subject of temperature parameters and thermal resistance in the heat pies, through findings in literature and an applied model. The study, based on literature and an applied model, found that higher particle conductivity and higher concentration of nanoparticles consequently decrease the thermal resistance in the heat pipes, resulting in an enhanced thermal performance of the heat pipes with nanofluids as working fluids. It is however concluded that difficulties in finding the optimal synthesis of nanofluids, the concentration level of nanoparticles and the filling ratio of nanofluids in heat pipes, set bounds to the commercial use of nanofluids in heat pipes. It is suggested that, in order to enhance the heat transfer performance of nanofluids in heat pipes, to conduct further research concerning e.g. synthesis of nanofluids and concentration level of nanoparticles in nanofluids

    Investing in antibiotics to alleviate future catastrophic outcomes : what is the value of having an effective antibiotic to mitigate pandemic influenza?

    Get PDF
    Over 95% of post-mortem samples from the 1918 pandemic, which caused 50 to 100 million deaths, showed bacterial infection complications. The introduction of antibiotics in the 1940s has since reduced the risk of bacterial infections, but growing resistance to antibiotics could increase the toll from future influenza pandemics if secondary bacterial infections are as serious as in 1918, or even if they are less severe. We develop a valuation model of the option to withhold wide use of an antibiotic until significant outbreaks such as pandemic influenza or foodborne diseases are identified. Using real options theory, we derive conditions under which withholding wide use is beneficial, and calculate the option value for influenza pandemic scenarios that lead to secondary infections with a resistant Staphylococcus aureus strain. We find that the value of withholding an effective novel oral antibiotic can be positive and significant unless the pandemic is mild and causes few secondary infections with the resistant strain or if most patients can be treated intravenously. Although the option value is sensitive to parameter uncertainty, our results suggest that further analysis on a case-by-case basis could guide investment in novel agents as well as strategies on how to use them

    Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer

    Get PDF
    The present study investigated the interaction between c-erbB2 overexpression and the response to first-line endocrine therapy in patients with advanced breast cancer. The primary tumours of 241 patients who were treated at first relapse with endocrine therapy were assessed for overexpression of c-erbB2 by immunohistochemistry. c-erbB2 was overexpressed in 76 (32%) of primary breast cancers and did not correlate with any other prognostic factor. The overall response to treatment and time to progression were significantly lower in patients with c-erbB2-positive tumours compared to those that were c-erbB2-negative (38% vs 56%, P = 0.02; and 4.1 months vs 8.7 months, P < 0.001, respectively). In multivariate analysis, c-erbB2 status was the most significant predictive factor for a short time to progression (P = 0.0009). In patients with ER-positive primary tumours treated at relapse with tamoxifen (n = 170), overexpression of c-erbB2 was associated with a significantly shorter time to progression (5.5 months vs 11.2 months, P < 0.001). In conclusion, overexpression of c-erbB2 in the primary tumour is an independent marker of relative resistance to first-line endocrine therapy in patients with advanced breast cancer. In patients with ER-positive primary tumours, the overexpression of c-erbB2 defines a subgroup less likely to respond to endocrine therapy. © 1999 Cancer Research Campaig

    Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease

    Get PDF
    HER-2 overexpression, a predictive marker of tumour aggressiveness and responsiveness to therapy, occurs in 20–30% of breast cancer. Although breast cancer is a heterogeneous disease, HER-2 measurement is carried out in primary tumour. This study aims to evaluate HER-2 overexpression in primary and metastases and its effect on treatment decisions. Biopsies from primary breast cancer and corresponding metastases from 58 patients were studied. HER-2 overexpression was evaluated immunohistochemically in all primary and metastatic sites. Positive overexpression in primary and/or metastases was confirmed by fluorescence in situ hybridisation (FISH). Discordance in HER-2 overexpression between primary and metastatic sites was 14% (eight of 58 patients). Concordance was found in 50 (86%) of patients (95% CI: 77–95). In one patient (2%), HER-2 was negative in metastasis but positive in primary. In seven (12%) patients, HER-2 was positive in metastases and negative in primary (95% CI: 3.7–20), and three of them responded to trastuzumab. Gene amplification by FISH was found in all cases with HER-2 positive (+2 and +3) by immunohistochemistry. Our data suggest that a possible discordance of HER-2 overexpression between primary and metastases should be considered when making treatment decisions in patients with primary HER-2-negative tumours

    Cell-surface sensors for real-time probing of cellular environments

    Get PDF
    Author Manuscript 2012 August 1.The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules in the cellular environment. The sensor is an aptamer (a short length of single-stranded DNA) that binds to platelet-derived growth factor (PDGF) and contains a pair of fluorescent dyes. When bound to PDGF, the aptamer changes conformation and the dyes come closer to each other, producing a signal. The sensor, which is covalently attached to the membranes of mesenchymal stem cells, can quantitatively detect with high spatial and temporal resolution PDGF that is added in cell culture medium or secreted by neighbouring cells. The engineered stem cells retain their ability to find their way to the bone marrow and can be monitored in vivo at the single-cell level using intravital microscopy.National Institutes of Health (U.S.) (Grant HL097172)National Institutes of Health (U.S.) (Grant HL095722)National Institutes of Health (U.S.) (Grant DE019191)National Institutes of Health (U.S.) (Grant NIAID 5RC1AI086152)Charles A. Dana FoundationAmerican Heart Association (Grant 0970178N)National Science Foundation (U.S.) (Graduate Fellowship

    HER2 therapy: Molecular mechanisms of trastuzumab resistance

    Get PDF
    Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. The majority of patients with metastatic breast cancer who initially respond to trastuzumab develop resistance within one year of treatment initiation, and in the adjuvant setting 15% of patients still relapse despite trastuzumab-based therapy. In this review, we discuss potential mechanisms of antitumor activity by trastuzumab, and how these mechanisms become altered to promote therapeutic resistance. We also discuss novel therapies that may improve the efficacy of trastuzumab, and that offer hope that the survival of breast cancer patients with HER2-overexpressing tumors can be vastly improved

    Evaluation of ER, PgR, HER-2 and Ki-67 as predictors of response to neoadjuvant anthracycline chemotherapy for operable breast cancer

    Get PDF
    Primary systemic therapy (PST) for operable breast cancer enables the identification of in vivo biological markers that predict response to treatment. A total of 118 patients with T2–4 N0–1 M0 primary breast cancer received six cycles of anthracycline-based PST. Clinical and radiological response was assessed before and after treatment using UICC criteria. A grading system to score pathological response was devised. Diagnostic biopsies and postchemotherapy surgical specimens were stained for oestrogen (ER) and progesterone (PgR) receptor, HER-2 and cell proliferation (Ki-67). Clinical, radiological and pathological response rates were 78, 72 and 38%, respectively. There was a strong correlation between ER and PgR staining (P<0.0001). Higher Ki-67 proliferation indices were associated with PgR− tumours (median 28.3%, PgR+ 22.9%; P=0.042). There was no relationship between HER-2 and other biological markers. No single pretreatment or postchemotherapy biological parameter predicted response by any modality of assessment. In all, 10 tumours changed hormone receptor classification after chemotherapy (three ER, seven PgR); HER-2 staining changed in nine cases. Median Ki-67 index was 24.9% before and 18.1% after treatment (P=0.02); the median reduction in Ki-67 index after treatment was 21.2%. Tumours displaying >75% reduction in Ki-67 after chemotherapy were more likely to achieve a pathological response (77.8 vs 26.7%, P=0.004)

    Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    Get PDF
    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities
    corecore