198 research outputs found
The AE4 transporter mediates kidney acid-base sensing
The kidney plays a key role in the correction of systemic acid-base imbalances. Central for this regulation are the intercalated cells in the distal nephron, which secrete acid or base into the urine. How these cells sense acid-base disturbances is a long-standing question. Intercalated cells exclusively express the Na-dependent Cl/HCO exchanger AE4 (Slc4a9). Here we show that AE4-deficient mice exhibit a major dysregulation of acid-base balance. By combining molecular, imaging, biochemical and integrative approaches, we demonstrate that AE4-deficient mice are unable to sense and appropriately correct metabolic alkalosis and acidosis. Mechanistically, a lack of adaptive base secretion via the Cl/HCO exchanger pendrin (Slc26a4) is the key cellular cause of this derailment. Our findings identify AE4 as an essential part of the renal sensing mechanism for changes in acid-base status
P2X receptors: epithelial ion channels and regulators of salt and water transport.
When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels
Institutional Economics and Transition Economies: Some Analytical Issues
It is argued in literature that two schools of thoughts might have been most relevant and influential to the policy formation and implementation in transition economies, with distinguishable economic and social outcomes. While Russia and some countries in the Central and Eastern Europe have commonly been perceived as the subscribers to 'the Washington consensus,' the transition practice in China is seen by some as a vindication of 'the evolutionary-institutionalist perspective.' This study attempts to assess the validity of this latter argument and, on that basis, to raise some analytical issues which may warrant further scholarly investigations. These include the role of the government in transition economies, the characteristics of China's 'gradualist' approach, the essence of an economic transition and the criteria for assessing its progress. For the benefit of a fruitful analysis, these issues need to be more carefully addressed
Differential Inhibitory Effects of CysLT1 Receptor Antagonists on P2Y6 Receptor-Mediated Signaling and Ion Transport in Human Bronchial Epithelia
BACKGROUND: Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT(1) receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT(1) and P2Y(6) receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT(1) receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. METHODOLOGY/PRINCIPAL FINDINGS: In this study, western blot analysis confirmed that both CysLT(1) and P2Y(6) receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT(1) antagonists inhibited the uridine diphosphate (UDP)-evoked I(SC), but only montelukast inhibited the UDP-evoked [Ca(2+)](i) increase. In the presence of forskolin or 8-bromoadenosine 3'5' cyclic monophosphate (8-Br-cAMP), the UDP-induced I(SC) was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked I(SC) potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2'-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2'-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced I(SC) potentiated by N(6)-Phenyladenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. CONCLUSIONS/SIGNIFICANCE: In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT(1) receptor antagonists exert differential inhibitory effects on P2Y(6) receptor-coupled Ca(2+) signaling pathways and the potentiating effect on I(SC) mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia
Pharmacological Properties and Physiological Function of a P2X-Like Current in Single Proximal Tubule Cells Isolated from Frog Kidney
Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2Xf) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2Xf was inhibited by suramin, PPADS and TNP-ATP. Activation of P2Xf attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2Xf plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2Xf inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells
- …