5 research outputs found

    Kelp forest as a habitat for mobile epifauna: case study of Caprella septentrionalis

    No full text
    Distribution and abundance of the amphipod Caprella septentrionalis in relation to environmental conditions and habitat preferences were investigated in a kelp forest in Hornsund, Spitsbergen. Three sampling sites differed in hydrodynamics, organic and inorganic suspension concentration, and sedimentation rates. None of these abiotic factors or species of a macroalgal host appeared to have a significant influence on C. septentrionalis abundance and size range. An apparent preference towards the blade parts of the algal thalli was observed. These results support the idea of C. septentrionalis as a generalist Arctic–boreal species that takes advantage of the protective nature of kelp forests

    Ecological Drivers of and Responses by Arctic Benthic Communities, with an Emphasis on Kongsfjorden, Svalbard

    No full text
    Knowledge on the causes and consequences that structure benthic communities is essential to understand and conserve Arctic ecosystems. This review aims to summarize the current knowledge on the effects of abiotic and biotic factors on species interactions and community traits, i.e. diversity, structure, and functioning of Arctic coastal hard- and soft-bottom habitats, with emphasis on Kongsfjorden (Svalbard). Current evidence indicates that descriptive and mensurative studies on the distribution of species prevail and few studies allow inferences on the underlying processes generating observed patterns. Furthermore, Arctic hard- and soft-bottom communities show some fundamental differences in their ecology. The recovery in hard-bottom communities from disturbance, for instance, takes exceptionally long (i.e. > decadal) due to slow growth and/or sporadic recruitment, while it is considerably shorter in soft-bottom communities. Also, Arctic hard-bottom communities display strong competitive hierarchies that appear negligible in communities populating sedimentary shores. This review concludes with a suggestion to shift the focus in Arctic benthos research from pattern to processes and the identification of major research gaps. These include (i) the apparent demarcation of studies being devoted to either rocky or to sedimentary shores, which hamper studies on habitat connectivity, (ii) the lack of studies addressing the effects of pathogens and diseases on community ecology, and (iii) the incomplete assessment of potentially significant drivers of community ecology, such as trophic interactions, recruitment success, and competition

    Zooplankton in Kongsfjorden (1996–2016) in Relation to Climate Change

    No full text
    Zooplankton in Kongsfjorden, Svalbard, is shaped by irregular advection of seawater from the West Spitsbergen Current as well as input of freshwater of glacial and riverine origin. The zooplankton community reflects contributions of Arctic vs. Atlantic water masses in the fjord, and is changing with increasing temperature and declining sea ice. Here, we review zooplankton studies from Kongsfjorden, and present new data from a 20-year time series (1996–2016) of zooplankton abundance/biomass in the fjord based on annual surveys during summer. During the last decade, the marine environment of the West Spitsbergen Shelf and adjacent fjords has undergone changes with increasing temperatures and volume of inflowing Atlantic Water and declining sea ice. Annual monitoring of mesozooplankton since 1996 has shown high seasonal, spatial, and inter-annual variation in species abundance and biomass, and in the proportion of Atlantic and Arctic species. Inter-annual variations in species composition and abundance demonstrate fluctuating patterns related to changes in hydrography. “Warm years” in Kongsfjorden were characterized by higher abundances of Atlantic species, such as Calanus finmarchicus, Oithona atlantica, Thysanoessa longicaudata and Themisto abyssorum. Other krill species, particularly Thysanoessa inermis and to a lesser extent T. longicaudata, increased in abundance during the warming period in 2006–2007, mainly in the inner basin. “Cold years”, on the other hand, were characterized by higher abundance of Themisto libellula. There was no clear impact, however, of changes in environmental factors on the abundance or biomass of the Arctic species Calanus glacialis suggesting that the changes in environmental conditions have not reached critical levels for this species. The long-term zooplankton data demonstrate that some Atlantic species have become more abundant in the Kongsfjorden’s pelagic realm, suggesting that they may benefit from increasing temperature, and also that the total biomass of zooplankton has increased in the fjord implying potentially higher secondary production
    corecore