574 research outputs found

    Winter Anomaly 1982/83 in Comparison with Earlier Winters (1960-82)

    Get PDF
    The winter anomaly in the winter of 1982/83 is compared with the winter anomalies of earlier winters (1960-82) from the point of view of amplitude and timing of the winter anomaly, and geomagnetic and dynamic activity influences. Some evidence of a negative influence of sudden stratospheric warnings on the winter anomaly is given

    Daytime Electron Density At the F1-Region in Europe During Geomagnetic Storms

    Get PDF
    This study attempts to demonstrate changes in the ionospheric F1-region daytime ionization during geomagnetic storms. The F1-region is explored using available data from several European middle latitude and lower latitude observatories and a set of geomagnetic storms encompassing a range of seasons and solar activity levels. The results of analysis suggest systematic seasonal and partly latitudinal differences in the F1-region response to geomagnetic storm. The pattern of the response of the F1-region at higher middle latitudes, a decrease in electron density, does not depend on the type of response of the F2-region and on solar activity. A brief interpretation of these findings is presented

    Assessing the quality of ionogram interpretation using the HF Doppler technique

    Get PDF
    International audienceThe first joint common volume measurements by the Digisonde Portable Sounder (DPS-4) and a new Doppler type system has been run at the Pruhonice ionospheric observatory (49.99° N, 14.54° E) since January 2004. The measurement of the Doppler shift is carried out continuously on a frequency of 3.6 MHz, thus the radio wave is reflected predominantly from the ionospheric F layer. To compare digisonde measurements with the Doppler data, a phase path was calculated from both Doppler and digisonde records. Under stormy conditions and in the case where a sporadic E layer was present, a significant disagreement between both measurements has been found. The discrepancies could be related to the uncertainties of the observational inputs and to the interpretation of the digisonde data. The comparison of the phase paths shows that during geomagnetically quiet days, in the absence of the sporadic E layer, and when high quality ionograms are available and correctly scaled, the electron density N(h) profiles, calculated by the Automatic Real Time Ionogram Scaler with True height algorithm (ARTIST), can be considered reliable

    Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998?March 2000); influence from below and above

    No full text
    International audienceThe basic aim of this ?case study' is to investigate the variability in the maximum height of the ionospheric F2-layer, hmF2, with periods of planetary waves (2?30 days), and to make an attempt to determine their origin. The hourly data of hmF2 above Millstone Hill (42.6° N, 71.5° W) during 01 September 1998 - 31 March 2000 were used for analysis. Three types of disturbances are studied in detail: (i) the 27- day oscillations observed in the hmF2 above Millstone Hill are generated by the geomagnetic activity and by the global-scale 27-day wave present in the zonal mesosphere/lower thermosphere (MLT) neutral wind. The time delay between the 27-day oscillation in the zonal wind and that in the hmF2 is found to be 5?6 days, while between the 27-day oscillation in the geomagnetic activity and that in the hmF2 is found to be 0.8?1 day; (ii) the 16-day oscillation in the hmF2 observed during summer 1999 is probably generated by the global scale 16-day modulation of the semidiurnal tide observed in the MLT region during PSMOS campaign in June?August. We found that if the modulated semidiurnal tide mediates the planetary wave signature in the ionosphere, this planetary wave oscillation has to be best expressed in the amplitude and in the phase of the 12-h periodicity of the ionosphere; and (iii) the third type of disturbances studied is the quasi-2- day activity in the hmF2 that increases during geomagnetic disturbances. The strong pseudo diurnal periodicities generated during the geomagnetic storms can interact between each other and produce the quasi-2-day oscillations in the ionosphere
    corecore